SU(r) Vafa-Witten Invariants, Ramanujan's Continued Fractions, and Cosmic Strings

被引:1
作者
Goettsche, L. [1 ]
Kool, M. [2 ]
Laarakker, T. [3 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Math Grp, Str Costiera 11, I-34100 Trieste, Italy
[2] Univ Utrecht, Dept Math, POB 80010, NL-3508 TA Utrecht, Netherlands
[3] Ties Laarakker Mus, KVK 59277475,Matrozenhof 105, NL-1018 ZP Amsterdam, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
HILBERT SCHEMES; SEIBERG-WITTEN; DONALDSON; SHEAVES; NUMBERS; MODULI;
D O I
10.1307/mmj/20226202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conjecture a structure formula for the SU(r) Vafa- Witten partition function for surfaces with holomorphic 2-form. The conjecture is based on S-duality and a structure formula for the vertical contribution previously derived by the third-named author using Gholampour-Thomas's theory of virtual degeneracy loci. For ranks r = 2, 3, conjectural expressions for the partition function in terms of the theta functions of Ar-1, A'r-1 and Seiberg-Witten invariants were known. We conjecture new expressions for r = 4, 5 in terms of the theta functions of Ar-1, A'r-1, Seiberg-Witten invariants, and continued fractions studied by Ramanujan. The vertical part of our conjectures is proved for low virtual dimensions by calculations on nested Hilbert schemes. The horizontal part of our conjectures gives predictions for virtual Euler characteristics of Gieseker-Maruyama moduli spaces of stable sheaves. In this case, our formulae are sums of universal functions with coefficients in Galois extensions of Q. The universal functions, corresponding to different quantum vacua, are permuted under the action of the Galois group. For r = 6, 7, we also find relations with Hauptmoduln of Gamma 0(r). We present K-theoretic refinements for r = 2, 3,4 involving weak Jacobi forms.
引用
收藏
页码:3 / 63
页数:61
相关论文
共 62 条
[1]   S-Duality and Refined BPS Indices [J].
Alexandrov, Sergei ;
Manschot, Jan ;
Pioline, Boris .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 380 (02) :755-810
[2]  
[Anonymous], 2019, Surv. Differ. Geom., V24, P67
[3]  
[Anonymous], 2019, Adv. Math., V356
[4]  
Apo67 T. M., 1967, Modular functions and Dirichlet series in number theory
[5]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[6]  
Caldararu Cal00 A. H., 2000, Derived categories of twisted sheaves on Calabi-Yau manifolds
[7]  
Chan Cha95 H. H., 1995, Acta Arithmetica, VLXXIII, P4
[8]   Poincare invariants are Seiberg-Witten invariants [J].
Chang, Huai-Liang ;
Kiem, Young-Hoon .
GEOMETRY & TOPOLOGY, 2013, 17 (02) :1149-1163
[9]   Virtual fundamental classes via dg-manifolds [J].
Ciocan-Fontanine, Ionut ;
Kapranov, Mikhail .
GEOMETRY & TOPOLOGY, 2009, 13 :1779-1804
[10]  
Dijkgraaf DPS R., ITFA-97-09