MDNNSyn: A Multi-Modal Deep Learning Framework for Drug Synergy Prediction

被引:0
|
作者
Li, Lei [1 ,2 ,3 ]
Li, Haitao [1 ,2 ,3 ]
Ishdorj, Tseren-Onolt [4 ]
Zheng, Chunhou [1 ,2 ,3 ]
Su, Yansen [1 ,2 ,3 ]
机构
[1] Anhui Univ, Informat Mat & Intelligent Sensing Lab Anhui Prov, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Artificial Intelligence, Hefei 230601, Peoples R China
[3] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230601, Peoples R China
[4] Mongolian Univ Sci & Technol, Sch Informat & Commun Technol, Dept Comp Sci, Ulaanbaatar 13345, Mongolia
基金
中国国家自然科学基金;
关键词
Drugs; Predictive models; Topology; Semantics; Bioinformatics; Feature extraction; Deep learning; Gated neural network; multi-modal features; multi-source information; synergistic drug combinations; CANCER; COMBINATION; MODEL;
D O I
10.1109/JBHI.2024.3421916
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Synergistic drug combination prediction tasks based on the computational models have been widely studied and applied in the cancer field. However, most of models only consider the interactions between drug pairs and specific cell lines, without taking into account the multiple biological relationships of drug-drug and cell line-cell line that also largely affect synergistic mechanisms. To this end, here we propose a multi-modal deep learning framework, termed MDNNSyn, which adequately applies multi-source information and trains multi-modal features to infer potential synergistic drug combinations. MDNNSyn extracts topology modality features by implementing the multi-layer hypergraph neural network on drug synergy hypergraph and constructs semantic modality features through similarity strategy. A multi-modal fusion network layer with gated neural network is then employed for synergy score prediction. MDNNSyn is compared to five classic and state-of-the-art prediction methods on DrugCombDB and Oncology-Screen datasets. The model achieves area under the curve (AUC) scores of 0.8682 and 0.9013 on two datasets, an improvement of 3.70% and 2.71% over the second-best model. Case study indicates that MDNNSyn is capable of detecting potential synergistic drug combinations.
引用
收藏
页码:6225 / 6236
页数:12
相关论文
共 50 条
  • [21] Multi-modal deep learning for landform recognition
    Du, Lin
    You, Xiong
    Li, Ke
    Meng, Liqiu
    Cheng, Gong
    Xiong, Liyang
    Wang, Guangxia
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 : 63 - 75
  • [22] Deep Multi-modal Learning with Cascade Consensus
    Yang, Yang
    Wu, Yi-Feng
    Zhan, De-Chuan
    Jiang, Yuan
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2018, 11013 : 64 - 72
  • [23] Multi-modal deep distance metric learning
    Roostaiyan, Seyed Mahdi
    Imani, Ehsan
    Baghshah, Mahdieh Soleymani
    INTELLIGENT DATA ANALYSIS, 2017, 21 (06) : 1351 - 1369
  • [24] Multi-modal deep learning for joint prediction of otitis media and diagnostic difficulty
    Sundgaard, Josefine Vilsboll
    Hannemose, Morten Rieger
    Laugesen, Soren
    Bray, Peter
    Harte, James
    Kamide, Yosuke
    Tanaka, Chiemi
    Paulsen, Rasmus R.
    Christensen, Anders Nymark
    LARYNGOSCOPE INVESTIGATIVE OTOLARYNGOLOGY, 2024, 9 (01):
  • [25] Multi-Modal Graph Learning for Disease Prediction
    Zheng, Shuai
    Zhu, Zhenfeng
    Liu, Zhizhe
    Guo, Zhenyu
    Liu, Yang
    Yang, Yuchen
    Zhao, Yao
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (09) : 2207 - 2216
  • [26] Prediction of crime occurrence from multi-modal data using deep learning
    Kang, Hyeon-Woo
    Kang, Hang-Bong
    PLOS ONE, 2017, 12 (04):
  • [27] MMDL: A Novel Multi-modal Deep Learning Model for Stock Market Prediction
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 1070 - 1071
  • [28] Multi-modal advanced deep learning architectures for breast cancer survival prediction
    Arya, Nikhilanand
    Saha, Sriparna
    KNOWLEDGE-BASED SYSTEMS, 2021, 221
  • [29] Multi-modal graph learning for disease prediction
    Zheng, Shuai
    Zhu, Zhenfeng
    Liu, Zhizhe
    Guo, Zhenyu
    Liu, Yang
    Zhao, Yao
    arXiv, 2021,
  • [30] Small molecule drug and biotech drug interaction prediction based on multi-modal representation learning
    Dingkai Huang
    Hongjian He
    Jiaming Ouyang
    Chang Zhao
    Xin Dong
    Jiang Xie
    BMC Bioinformatics, 23