The Aα-eigenvalues of the generalized subdivision graph

被引:0
|
作者
Shamsher, Tahir [1 ]
机构
[1] IIT Bhubaneswar, Dept Math, Bhubaneswar 752050, India
关键词
Generalized subdivision graph; A(alpha)-spectrum; Laplacian spectrum; incidence matrix; subdivision graph; A(ALPHA)-SPECTRA;
D O I
10.1142/S1793830925500296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V-G,E-G) be a graph with an adjacency matrix A(G )and a diagonal degree matrix DG. For any graph G and a real number alpha is an element of [0, 1], the A(alpha)-matrix of G, denoted by A(alpha)(G), is defined as A(alpha)(G) = alpha D-G + (1 - alpha)A(G ). The generalized subdivision graph S-G(n(1),m(1)), derived from the subdivision graph of G having the vertex set V-G boolean OR E-G, comprises a vertex set V(G )x{1, 2,& mldr;,n1}boolean OR E-G x{1, 2,& mldr;,m(1) }. This construction includes n1 replicas of V(G )and m(1) replicas of E-G, with edges established between vertices (v,i) and (e,j) where e is an element of E(G )is incident to v is an element of V(G )in G. In this paper, we derive the A(alpha)-characteristic polynomial of S-G((n(1),m(1)). We demonstrate that if G is a regular graph, then the A(alpha)-spectrum of S-G((n(1),m(1)) is completely determined by the Laplacian spectrum of G. Specifically, when n(1) = m(1), the A(alpha)-spectrum of S-G((n(1),m(1)) is completely determined by the Laplacian spectrum of the subdivision graph of G. In conclusion, as an application, we present the construction of infinite families of non-isomorphic graphs that are A(alpha)-cospectral.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] GENERALIZED SUBDIVISION AND CONVERGENCE.
    Prautzsch, Hartmut
    Computer Aided Geometric Design, 1984, 2 (1-3) : 69 - 75
  • [42] Generalized subdivision of Bezier surfaces
    Hu, SM
    Wang, GZ
    Jin, TG
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1996, 58 (03): : 218 - 222
  • [43] Main eigenvalues and automorphisms of a graph
    Teranishi, Y
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (03): : 211 - 217
  • [44] A note on Laplacian graph eigenvalues
    Merris, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 33 - 35
  • [45] Distinct eigenvalues of the Transposition graph
    Konstantinova, Elena, V
    Kravchuk, Artem
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 690 : 132 - 141
  • [46] On the Distribution of Laplacian Eigenvalues of a Graph
    Guo, Ji Ming
    Wu, Xiao Li
    Zhang, Jiong Ming
    Fang, Kun Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (11) : 2259 - 2268
  • [47] Some results on the Aα-eigenvalues of a graph
    Chen, Hongzhang
    Li, Jianxi
    Shiu, Wai Chee
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (18): : 2998 - 3012
  • [48] Graph embeddings and Laplacian eigenvalues
    Guattery, S
    Miller, GL
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) : 703 - 723
  • [49] On the distribution of Laplacian eigenvalues of a graph
    Ji Ming Guo
    Xiao Li Wu
    Jiong Ming Zhang
    Kun Fu Fang
    Acta Mathematica Sinica, English Series, 2011, 27 : 2259 - 2268
  • [50] EIGENVALUES OF MOLECULES WITH DISSECTED GRAPH
    ROUVRAY, DH
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1972, 274 (18): : 1561 - &