A Physics-Informed Hybrid Multitask Learning for Lithium-Ion Battery Full-Life Aging Estimation at Early Lifetime

被引:1
|
作者
Zhang, Shuxin [1 ]
Liu, Zhitao [1 ]
Xu, Yan [2 ]
Su, Hongye [1 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[2] Nanyang Technol Univ, Ctr Power Engn, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
Battery health state estimation; hybrid aging mode-informed feature; electro chemical-informed multitask generative model; physics-informed hybrid multitask learning (PIHMTL); Li plus plus diffusion dynamics; MODEL;
D O I
10.1109/TII.2024.3452273
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lithium-ion battery health state estimation constitutes an important part of battery management systems, with existing methods either based on mechanistic models or data-driven approaches. This article proposes a physics-informed hybrid multitask learning approach for estimating battery full-life aging states by integrating mechanistic knowledge with data-driven methods at an early lifetime. First, a hybrid aging mode-informed feature is introduced to integrate electrode-level health states with data-driven information. An electrochemical-informed multitask generative model is established to estimate Li$<^>+$ concentration dynamics in both the solid particle and electrolyte. An electrode-level state-constrained training strategy is implemented to guide the model to respect causality. For validation purposes, three battery datasets are utilized to estimate aging states from the electrochemical to the cell level. Compared with traditional mechanistic and data-driven models, the proposed method demonstrates higher accuracy and real-time performance in battery state estimation.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 50 条
  • [1] Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation
    Singh, Soumya
    Ebongue, Yvonne Eboumbou
    Rezaei, Shahed
    Birke, Kai Peter
    BATTERIES-BASEL, 2023, 9 (06):
  • [2] Hybrid physics-informed neural networks for lithium-ion battery modeling and prognosis
    Nascimento, Renato G.
    Corbetta, Matteo
    Kulkarni, Chetan S.
    Viana, Felipe A. C.
    JOURNAL OF POWER SOURCES, 2021, 513
  • [3] A Physics-Informed Machine Learning Approach for Estimating Lithium-Ion Battery Temperature
    Cho, Gyouho
    Wang, Mengqi
    Kim, Youngki
    Kwon, Jaerock
    Su, Wencong
    IEEE ACCESS, 2022, 10 : 88117 - 88126
  • [4] State of health estimation of lithium-ion battery cell based on optical thermometry with physics-informed machine learning
    Jang, Jeongwoo
    Jo, Junhyoung
    Kim, Jinsu
    Lee, Seungmin
    Lee, Tonghun
    Yoo, Jihyung
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 140
  • [5] A physics-informed neural network approach to parameter estimation of lithium-ion battery electrochemical model
    Wang, Jingrong
    Peng, Qiao
    Meng, Jinhao
    Liu, Tianqi
    Peng, Jichang
    Teodorescu, Remus
    JOURNAL OF POWER SOURCES, 2024, 621
  • [6] A method for estimating lithium-ion battery state of health based on physics-informed machine learning
    Sun, Guoqing
    Liu, Yafei
    Liu, Xuewen
    JOURNAL OF POWER SOURCES, 2025, 627
  • [7] Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy
    Lin, Yan-Hui
    Ruan, Sheng-Jia
    Chen, Yun-Xia
    Li, Yan-Fu
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 188
  • [8] A method for estimating lithium-ion battery state of health based on physics-informed hybrid neural network
    Luo, Yufu
    Ju, Shaoxiao
    Li, Peichao
    Zhang, Hengyun
    ELECTROCHIMICA ACTA, 2025, 525
  • [9] Remaining Useful Life Estimation for Lithium-Ion Batteries using Physics-Informed Neural Networks
    Pugalenthi, Karkulali
    Park, Hyunseok
    Hussain, Shaista
    Raghavan, Nagarajan
    2024 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM 2024, 2024, : 67 - 73
  • [10] Physics-Informed Machine Learning for Degradation Diagnostics of Lithium-Ion Batteries
    Thelen, Adam
    Lui, Yu Hui
    Shen, Sheng
    Laflamme, Simon
    Hu, Shan
    Hu, Chao
    PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 3A, 2021,