A POLYNOMIAL OPTIMIZATION FRAMEWORK FOR POLYNOMIAL QUASI-VARIATIONAL INEQUALITIES WITH MOMENT-SOS RELAXATIONS

被引:0
作者
Tang, Xindong [1 ,2 ]
Zhang, Min [3 ]
Zhong, Wenzhi [2 ,4 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Inst Res & Continuing Educ, Shenzhen, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Univ Bath, Dept Math Sci, Bath, England
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2024年
基金
中国国家自然科学基金;
关键词
Quasi-variational inequality; polynomial optimization; Lagrange multiplier expression; Moment-SOS hierarchy; DUAL GAP FUNCTION; CONVEXITY;
D O I
10.3934/naco.2024054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasi-variational inequality problems (QVI) given by polynomial functions. By applying Lagrange multiplier expressions, we formulate polynomial optimization problems whose minimizers are KKT points for the QVI. Then, feasible extensions are exploited to preclude KKT points that are not solutions. Moment-SOS relaxations are incorporated to solve the polynomial optimization problems in our methods. Under certain conditions, our approach guarantees to find a solution to the QVI or detect the nonexistence of solutions.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] An accelerated first-order method for solving SOS relaxations of unconstrained polynomial optimization problems
    Bertsimas, Dimitris
    Freund, Robert M.
    Sun, Xu Andy
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (03) : 424 - 441
  • [22] Solving quasi-variational inequalities via their KKT conditions
    Facchinei, Francisco
    Kanzow, Christian
    Sagratella, Simone
    MATHEMATICAL PROGRAMMING, 2014, 144 (1-2) : 369 - 412
  • [23] The semismooth Newton method for the solution of quasi-variational inequalities
    Facchinei, Francisco
    Kanzow, Christian
    Karl, Sebastian
    Sagratella, Simone
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (01) : 85 - 109
  • [24] Solving quasi-variational inequalities via their KKT conditions
    Francisco Facchinei
    Christian Kanzow
    Simone Sagratella
    Mathematical Programming, 2014, 144 : 369 - 412
  • [25] The semismooth Newton method for the solution of quasi-variational inequalities
    Francisco Facchinei
    Christian Kanzow
    Sebastian Karl
    Simone Sagratella
    Computational Optimization and Applications, 2015, 62 : 85 - 109
  • [26] Fractional elliptic quasi-variational inequalities: Theory and numerics
    Antil, Harbir
    Rautenberg, Carlos N.
    INTERFACES AND FREE BOUNDARIES, 2018, 20 (01) : 1 - 24
  • [28] Sums of Squares Certificates for Polynomial Moment Inequalities
    Klep, Igor
    Magron, Victor
    Volcic, Jurij
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2025,
  • [29] A bounded degree SOS hierarchy for polynomial optimization
    Lasserre J.B.
    Toh K.-C.
    Yang S.
    EURO Journal on Computational Optimization, 2017, 5 (1-2) : 87 - 117
  • [30] Existence Results for Quasi-variational Inequalities with Applications to Radner Equilibrium ProblemsResolution Through Variational Inequalities
    D. Aussel
    M. B. Donato
    M. Milasi
    A. Sultana
    Set-Valued and Variational Analysis, 2021, 29 : 931 - 948