A POLYNOMIAL OPTIMIZATION FRAMEWORK FOR POLYNOMIAL QUASI-VARIATIONAL INEQUALITIES WITH MOMENT-SOS RELAXATIONS

被引:0
|
作者
Tang, Xindong [1 ,2 ]
Zhang, Min [3 ]
Zhong, Wenzhi [2 ,4 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Inst Res & Continuing Educ, Shenzhen, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[4] Univ Bath, Dept Math Sci, Bath, England
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2024年
基金
中国国家自然科学基金;
关键词
Quasi-variational inequality; polynomial optimization; Lagrange multiplier expression; Moment-SOS hierarchy; DUAL GAP FUNCTION; CONVEXITY;
D O I
10.3934/naco.2024054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasi-variational inequality problems (QVI) given by polynomial functions. By applying Lagrange multiplier expressions, we formulate polynomial optimization problems whose minimizers are KKT points for the QVI. Then, feasible extensions are exploited to preclude KKT points that are not solutions. Moment-SOS relaxations are incorporated to solve the polynomial optimization problems in our methods. Under certain conditions, our approach guarantees to find a solution to the QVI or detect the nonexistence of solutions.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Solving polynomial variational inequality problems via Lagrange multiplier expressions and Moment-SOS relaxations
    Nie, Jiawang
    Sun, Defeng
    Tang, Xindong
    Zhang, Min
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (02) : 361 - 394
  • [2] A sublevel moment-SOS hierarchy for polynomial optimization
    Chen, Tong
    Lasserre, Jean-Bernard
    Magron, Victor
    Pauwels, Edouard
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (01) : 31 - 66
  • [3] A sublevel moment-SOS hierarchy for polynomial optimization
    Tong Chen
    Jean-Bernard Lasserre
    Victor Magron
    Edouard Pauwels
    Computational Optimization and Applications, 2022, 81 : 31 - 66
  • [4] A note on the computational complexity of the moment-SOS hierarchy for polynomial optimization
    Gribling, Sander
    Polak, Sven
    Slot, Lucas
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SYMBOLIC & ALGEBRAIC COMPUTATION, ISSAC 2023, 2023, : 280 - 288
  • [5] Slow Convergence of the Moment-SOS Hierarchy for an Elementary Polynomial Optimization Problem
    Henrion, Didier
    Le Franc, Adrien
    Magron, Victor
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2025, 9 (01): : 261 - 278
  • [6] FINITE CONVERGENCE OF MOMENT-SOS RELAXATIONS WITH NONREAL RADICAL IDEALS
    Huang, Lei
    Nie, Jiawang
    Yuan, Ya-xiang
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (04) : 3399 - 3428
  • [7] GENERALIZED VARIATIONAL INEQUALITIES AND GENERALIZED QUASI-VARIATIONAL INEQUALITIES
    张从军
    Applied Mathematics and Mechanics(English Edition), 1993, (04) : 333 - 344
  • [8] A hierarchy of spectral relaxations for polynomial optimization
    Mai, Ngoc Hoang Anh
    Lasserre, Jean-Bernard
    Magron, Victor
    MATHEMATICAL PROGRAMMING COMPUTATION, 2023, 15 (04) : 651 - 701
  • [9] A hierarchy of spectral relaxations for polynomial optimization
    Ngoc Hoang Anh Mai
    Jean-Bernard Lasserre
    Victor Magron
    Mathematical Programming Computation, 2023, 15 : 651 - 701
  • [10] Operator inclusions and quasi-variational inequalities
    V. S. Klimov
    Mathematical Notes, 2017, 101 : 863 - 877