Design guidelines for Si metal-oxide-semiconductor and Si/SiGe heterostructure quantum dots for spin qubits

被引:0
作者
Li, Yu-Cheng [1 ]
Chang, Che-Hao [1 ]
Wu, Yu-Jui [1 ]
Liao, Chen-Yao [1 ]
Li, Jiun-Yun [1 ,2 ,3 ,4 ,5 ]
机构
[1] Natl Taiwan Univ, Grad Inst Elect Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Grad Sch Adv Technol, Taipei 10617, Taiwan
[4] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 10617, Taiwan
[5] Taiwan Semicond Res Inst, Hsinchu 30078, Taiwan
关键词
SILICON; TRANSPORT; CHARGE; SYSTEM;
D O I
10.1063/5.0245929
中图分类号
O59 [应用物理学];
学科分类号
摘要
Si-based spin qubits are promising due to their long decoherence time and the compatibility with state-of-the-art semiconductor technology and have been demonstrated using quantum dots (QDs) to host single electrons for spin manipulation. In this work, we simulate the electrostatics and quantum transport properties of quantum dots on a Si metal-oxide-semiconductor platform and a Si/SiGe heterostructure. We investigate the effects of gate configurations and the SiGe spacer thickness on device characteristics, such as gate capacitances, Coulomb blockade, and charge stability. For a single quantum dot, placing its barrier gates (BGs) under the plunger gate improves the charge stability, while swapping the positions of those gates reduces the effects of the barrier gate biases on the charge stability. A thicker SiGe spacer further suppresses the effects of the barrier gate biases on the charge stability for quantum dots on the Si/SiGe heterostructure but leads to stronger crosstalk between neighboring quantum dots. Wider barrier gates can help to mitigate the crosstalk effects for multiple quantum dots. These findings provide key insights into the optimization of the gate configurations and material selection to improve the charge stability and minimize the crosstalk by different gates for future development of scalable Si-based quantum dots.
引用
收藏
页数:5
相关论文
共 34 条
  • [1] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    [J]. NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [2] Nongalvanic Calibration and Operation of a Quantum Dot Thermometer
    Chawner, J. M. A.
    Barraud, S.
    Gonzalez-Zalba, M. F.
    Holt, S.
    Laird, E. A.
    Pashkin, Yu A.
    Prance, J. R.
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (03)
  • [3] COMSOL AB, 2020, Comsol Multiphysics Reference Manual
  • [4] First-principles calculation of the TiN effective work function on SiO2 and on HfO2
    Fonseca, L. R. C.
    Knizhnik, A. A.
    [J]. PHYSICAL REVIEW B, 2006, 74 (19)
  • [5] Quantum computer aided design simulation and optimization of semiconductor quantum dots
    Gao, X.
    Nielsen, E.
    Muller, R. P.
    Young, R. W.
    Salinger, A. G.
    Bishop, N. C.
    Lilly, M. P.
    Carroll, M. S.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 114 (16)
  • [6] VARIATION OF THE COULOMB STAIRCASE IN A 2-JUNCTION SYSTEM BY FRACTIONAL ELECTRON CHARGE
    HANNA, AE
    TINKHAM, M
    [J]. PHYSICAL REVIEW B, 1991, 44 (11): : 5919 - 5922
  • [7] Temperature Dependence of Charge Distributions and Carrier Mobility in an Undoped Si/SiGe Heterostructure
    Hsu, Nai-Wen
    Hou, Wei-Chih
    Chen, Yen-Yang
    Wu, Yu-Jui
    Kao, Hsiang-Shun
    Harris, Charles Thomas
    Lu, Tzu-Ming
    Li, Jiun-Yun
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (02) : 482 - 486
  • [8] Fidelity benchmarks for two-qubit gates in silicon
    Huang, W.
    Yang, C. H.
    Chan, K. W.
    Tanttu, T.
    Hensen, B.
    Leon, R. C. C.
    Fogarty, M. A.
    Hwang, J. C. C.
    Hudson, F. E.
    Itoh, K. M.
    Morello, A.
    Laucht, A.
    Dzurak, A. S.
    [J]. NATURE, 2019, 569 (7757) : 532 - +
  • [9] SINGLE ELECTRON CHARGING EFFECTS IN SEMICONDUCTOR QUANTUM DOTS
    KOUWENHOVEN, LP
    VANDERVAART, NC
    JOHNSON, AT
    KOOL, W
    HARMANS, CJPM
    WILLIAMSON, JG
    STARING, AAM
    FOXON, CT
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 85 (03): : 367 - 373
  • [10] Quantum dot arrays in silicon and germanium
    Lawrie, W. I. L.
    Eenink, H. G. J.
    Hendrickx, N. W.
    Boter, J. M.
    Petit, L.
    Amitonov, S., V
    Lodari, M.
    Wuetz, B. Paquelet
    Volk, C.
    Philips, S. G. J.
    Droulers, G.
    Kalhor, N.
    van Riggelen, F.
    Brousse, D.
    Sammak, A.
    Vandersypen, L. M. K.
    Scappucci, G.
    Veldhorst, M.
    [J]. APPLIED PHYSICS LETTERS, 2020, 116 (08)