Fe-rich layered oxide cathode for sodium-ion batteries enabled by synergistic modulation of ion transport and structural stability

被引:0
|
作者
Hong, Yingbin [1 ]
Lin, Hongbin [1 ]
Ye, Xianbin [1 ]
Zhang, Leyi [1 ]
Zhang, Yuanmeng [1 ]
Yao, Hu-Rong [1 ]
Zheng, Lituo [1 ]
Huang, Yiyin [1 ]
Huang, Zhigao [1 ]
Hong, Zhensheng [1 ]
机构
[1] Fujian Normal Univ, Coll Phys & Energy, Fujian Prov Key Lab Quantum Manipulat & New Energy, Fuzhou 350117, Fujian, Peoples R China
关键词
Sodium-ion batteries; Layered oxide cathode; Fe-rich cathode material; NA-ION; PLANE-WAVE; ELECTRODE; ALPHA-NAFEO2; PERFORMANCE; UNLOCKING; REDOX;
D O I
10.1016/j.ensm.2025.104188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sustainability and availability of raw materials are of critical importance for sodium-ion batteries (SIBs) to have competitiveness. Iron (Fe) as an inexpensive and electrochemically active element in SIBs layered cathodes offers unique advantages. Nonetheless, Fe-rich materials typically perform poor and most reports focus on materials with Fe content around 1/3, as higher Fe content leads to Jahn-Teller distortion, irreversible structure damage, transition metal (TM) migration, and poor air stability. Herein, for the first time we report an Fe-rich material (Fe = 0.5) that has high energy density (143.28 mA h g-1 in 2-4 V) and shows comparable cyclability with typical low-Fe materials through the synergistic modulation of ion transport and structural stability. The pillar effect of Ca in the Na layer limits the gliding of the TMO2 slab and the migration of TM ions, while the addition of Al enhances the TM(3deg*)-O(2p) hybridization, reduces the lattice distortion, and suppresses the undesired phase transition. In a sodium-ion full cell system, an excellent cyclability of 82 % capacity retention after 150 cycles can be achieved, while the unmodified Fe-rich cathode only shows a capacity retention of 38 %. This work firstly demonstrates the feasibility of using Fe-rich materials as cathode materials for SIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
    郭根材
    王长昊
    明帮铭
    罗斯玮
    苏恒
    王博亚
    张铭
    尉海军
    王如志
    Chinese Physics B, 2018, (11) : 669 - 675
  • [2] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
    Guo, Gen-Cai
    Wang, Changhao
    Ming, Bang-Ming
    Luo, Si-Wei
    Su, Heng
    Wang, Bo-Ya
    Zhang, Ming
    Yu, Hai-Jun
    Wang, Ru-Zhi
    CHINESE PHYSICS B, 2018, 27 (11)
  • [3] A heterobimetallic single-source precursor enabled layered oxide cathode for sodium-ion batteries
    Li, Maofan
    Yang, Kai
    Liu, Jiajie
    Hu, Xiaobing
    Kong, Defei
    Liu, Tongchao
    Zhang, Mingjian
    Pan, Feng
    CHEMICAL COMMUNICATIONS, 2018, 54 (76) : 10714 - 10717
  • [4] MgO-Coated Layered Cathode Oxide With Enhanced Stability for Sodium-Ion Batteries
    Xue, Ling
    Bao, Shuo
    Yan, Ling
    Zhang, Yi
    Lu, Jinlin
    Yin, Yansheng
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [5] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Jinpin Wu
    Junhang Tian
    Xueyi Sun
    Weidong Zhuang
    InternationalJournalofMinerals,MetallurgyandMaterials, 2024, (07) : 1720 - 1744
  • [6] Recent progress on layered oxide cathode materials for sodium-ion batteries
    Jian X.-Y.
    Jin J.-T.
    Wang Y.
    Shen Q.-Y.
    Liu Y.-C.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 601 - 611
  • [7] Structural degradation mechanisms and modulation technologies of layered oxide cathodes for sodium-ion batteries
    Song, Tianyi
    Wang, Chenchen
    Lee, Chun-Sing
    CARBON NEUTRALIZATION, 2022, 1 (01): : 68 - 92
  • [8] A high-stability biphasic layered cathode for sodium-ion batteries
    Liang, Yue
    Xu, Hang
    Jiang, Kezhu
    Bian, Jingjing
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL COMMUNICATIONS, 2021, 57 (23) : 2891 - 2894
  • [9] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Wu, Jinpin
    Tian, Junhang
    Sun, Xueyi
    Zhuang, Weidong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (07) : 1720 - 1744
  • [10] A Superlattice-Stabilized Layered Oxide Cathode for Sodium-Ion Batteries
    Li, Qi
    Xu, Sheng
    Guo, Shaohua
    Jiang, Kezhu
    Li, Xiang
    Jia, Min
    Wang, Peng
    Zhou, Haoshen
    ADVANCED MATERIALS, 2020, 32 (23)