Impact of a RbF post-deposition treatment on the chemical structure of wide-gap CuIn0.1Ga0.9Se2 thin-film solar cell absorber surfaces

被引:2
作者
Both, Luisa [1 ,2 ]
Hauschild, Dirk [1 ,2 ,3 ]
Blankenship, Mary [1 ,2 ,3 ]
Steininger, Ralph [2 ]
Witte, Wolfram [4 ]
Hariskos, Dimitrios [4 ]
Paetel, Stefan [4 ]
Powalla, Michael [4 ,5 ]
Heske, Clemens [1 ,2 ,3 ]
Weinhardt, Lothar [1 ,2 ,3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem ITCP, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Photon Sci & Synchrotron Radiat IPS, Kaiserstr 12, D-76131 Karlsruhe, Germany
[3] Univ Nevada Vegas UNLV, Dept Chem & Biochem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
[4] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, Meitnerstr 1, D-70563 Stuttgart, Germany
[5] Karlsruhe Inst Technol KIT, Light Technol Inst LTI, Kaiserstr 12, D-76131 Karlsruhe, Germany
关键词
POST DEPOSITION TREATMENT; ELECTRONIC-STRUCTURE; CU(IN; GA)SE-2; EFFICIENCY; INTERFACE; XPS; HETEROJUNCTION; ELEMENTS;
D O I
10.1063/5.0239968
中图分类号
O59 [应用物理学];
学科分类号
摘要
A detailed characterization of the impact of a RbF post-deposition treatment (RbF-PDT) on the chemical structure of a wide-gap Cu(In, Ga)Se-2 thin-film solar cell absorber surface with a high Ga/(Ga + In) (GGI) ratio of 0.9 is presented. Using synchrotron- and lab-based x-ray photoelectron spectroscopy, as well as x-ray-excited Auger electron spectroscopy, we observe distinct differences to RbF-PDT on absorber surfaces with the common GGI of similar to 0.3. In particular, RbF-PDT reduces sodium and oxide content at the surface, while the copper concentration at the surface is not affected. We find no spectral evidence for the formation of a distinct Rb-In-Se surface layer. In addition, we observe that the GGI ratio at the surface is slightly decreased due to a reduction of the Ga and an increase in the In concentration, which may explain the observed improvement in the power conversion efficiency after the PDT (from 6.8% to 7.3%). (c) 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 58 条
[1]   Chemical and electronic surface structure of 20%-efficient Cu(In,Ga)Se2 thin film solar cell absorbers [J].
Baer, M. ;
Repins, I. ;
Contreras, M. A. ;
Weinhardt, L. ;
Noufi, R. ;
Heske, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (05)
[2]   Conduction Band Cliff at the CdS/CuIn0.1Ga0.9Se2 Thin-Film Solar Cell Interface [J].
Blankenship, Mary ;
Hauschild, Dirk ;
Both, Luisa ;
Pyatenko, Elizaveta ;
Witte, Wolfram ;
Hariskos, Dimitrios ;
Paetel, Stefan ;
Powalla, Michael ;
Weinhardt, Lothar ;
Heske, Clemens .
JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 128 (01) :339-345
[3]   NaF/RbF-Treated Cu(In,Ga)Se2 Thin-Film Solar Cell Absorbers: Distinct Surface Modifications Caused by Two Different Types of Rubidium Chemistry [J].
Bombsch, Jakob ;
Avancini, Enrico ;
Carron, Romain ;
Handick, Evelyn ;
Garcia-Diez, Raul ;
Hartmann, Claudia ;
Felix, Roberto ;
Ueda, Shigenori ;
Wilks, Regan G. ;
Bar, Marcus .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (31) :34941-34948
[4]   Impact of RbF and NaF Postdeposition Treatments on Charge Carrier Transport and Recombination in Ga-Graded Cu(In,Ga)Se2 Solar Cells [J].
Chang, Yu-Han ;
Carron, Romain ;
Ochoa, Mario ;
Tiwari, Ayodhya N. ;
Durrant, James R. ;
Steier, Ludmilla .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (40)
[5]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[6]   Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency [J].
Contreras, Miguel A. ;
Mansfield, Lorelle M. ;
Egaas, Brian ;
Li, Jian ;
Romero, Manuel ;
Noufi, Rommel ;
Rudiger-Voigt, Eveline ;
Mannstadt, Wolfgang .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07) :843-850
[7]   The Complicated Morality of Named Inventions [J].
Ehrler, Bruno ;
Hutter, Eline M. ;
Berry, Joseph J. .
ACS ENERGY LETTERS, 2021, 6 (02) :565-567
[8]   XPS INVESTIGATION OF ANODIC OXIDES GROWN ON P-TYPE INP [J].
FAUR, M ;
FAUR, M ;
JAYNE, DT ;
GORADIA, M ;
GORADIA, C .
SURFACE AND INTERFACE ANALYSIS, 1990, 15 (11) :641-650
[9]   Efficiency limitations for wide-band-gap chalcopyrite solar cells [J].
Gloeckler, M ;
Sites, JR .
THIN SOLID FILMS, 2005, 480 :241-245
[10]   Solar cell efficiency tables (version 62) [J].
Green, Martin A. ;
Dunlop, Ewan D. ;
Yoshita, Masahiro ;
Kopidakis, Nikos ;
Bothe, Karsten ;
Siefer, Gerald ;
Hao, Xiaojing .
PROGRESS IN PHOTOVOLTAICS, 2023, 31 (07) :651-663