Reconfigurable Mixed-Dimensional Transistor With Semimetal CNT Contacts

被引:0
作者
Li, Xuanzhang [1 ,2 ,3 ]
Li, Yuheng [1 ,2 ]
Mei, Zhen [1 ,2 ]
Liang, Liang [1 ,2 ]
Li, Qunqing [1 ,2 ,4 ]
Fan, Shoushan [1 ,2 ]
Wei, Yang [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China
[3] China Res & Dev Acad Machinery Equipment, Beijing 100089, Peoples R China
[4] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
来源
ADVANCED ELECTRONIC MATERIALS | 2025年
基金
中国国家自然科学基金;
关键词
carbon nanotubes; reconfigurable transistor; semimetal; two-dimensional material; RESISTANCE; DEVICES; WSE2;
D O I
10.1002/aelm.202400782
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reconfigurable low-dimensional devices are attractive for electronics in the post-Moore era. However, their performance and function design are limited by the metal-semiconductor contacts for the Fermi level pinning and fixed Schottky barrier height (SBH). Here, semimetal carbon nanotube (sCNT) contacts are incorporated into a WSe2 transistor to address these issues. The transistor exhibits excellent ambipolar transfer characteristics with on/off ratio exceeding 107 for both hole and electron conduction. Furthermore, the output characteristics are reconfigured among the four equivalent modes, P-P, P-N, N-P, and N-N, by applying appropriate gate voltage. The significant forward and backward rectifying behaviors at P-N and N-P modes are highly symmetrical and have high rectification ratios of over 106. The improvements are attributed to specific semimetal contacts for the gate-tunable SBH and the drain-induced Schottky barrier lowering (DISBL) effect. Practical circuits include a reconfigurable filter circuit and a logic invertor have been further demonstrated successfully. The progress reveals that the semimetal contacts have great potential in future reconfigurable devices and circuits.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Lundstrom M.S., Alam M.A., Science, 378, (2022)
  • [2] Franklin A.D., Science, 349, (2015)
  • [3] Iannaccone G., Bonaccorso F., Colombo L., Fiori G., Nat. Nanotechnol., 13, (2018)
  • [4] Kong L., Chen Y., Liu Y., Nano Res., 14, (2020)
  • [5] Liu C., Chen H., Wang S., Liu Q., Jiang Y.G., Zhang D.W., Liu M., Zhou P., Nat. Nanotechnol., 15, (2020)
  • [6] Datta S., Chakraborty W., Radosavljevic M., Science, 378, (2022)
  • [7] Wang S., Liu X., Xu M., Liu L., Yang D., Zhou P., Nat. Mater., 21, (2022)
  • [8] Gaillardon P.E., Amaru L., Zhang J., Micheli G.D., presented at 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), 24–28 March 2014, (2014)
  • [9] Navarro C., Barraud S., Martinie S., Lacord J., Jaud M.A., Vinet M., Solid-State Electron., 128, (2017)
  • [10] Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S.K., Colombo L., Nat. Nanotechnol., 9, (2014)