Exploring the synergy of python']python programming in single point incremental forming

被引:0
|
作者
Kumar, S. Pratheesh [1 ]
Mugilan, N. [1 ]
机构
[1] PSG Coll Technol, Dept Prod Engn, Coimbatore 641004, India
来源
INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM | 2025年
关键词
Data acquisition; Image processing; Tool path generation; !text type='Python']Python[!/text] programming; Single point incremental forming (SPIF); CURVES; CAD; GENERATION;
D O I
10.1007/s12008-025-02232-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Incremental forming, especially Single Point Incremental Forming (SPIF), is versatile and efficient in sheet metal fabrication. It eliminates the need for special tooling and exerts less forming force while increasing material formability. Recent research into SPIF has advanced understanding of its flexible forming mechanisms. Translating design concepts into physical components requires efficient methodologies that bridge design and manufacturing. For example, image-based CAD Conversion converts hand-drawn sketches, or digital designs, into high-quality, scalable, 3D models. Python 3D reconstruction uses computer vision and geometrical algorithms to generate accurate 3D representations of 2D image data from visual representations. NC code extraction uses python to convert visual images of sheet metal to machine-readable CNC machining instructions. This allows manufacturers to translate design specifications into more efficient, consistent, and accurate machine-readable instructions, thus advancing modern fabrication processes. The integration of these methodologies ensures dimensional and geometric accuracy, enhancing the overall quality of fabricated components.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] pPython']Python for Parallel Python']Python Programming
    Byun, Chansup
    Arcand, William
    Bestor, David
    Bergeron, Bill
    Gadepally, Vijay
    Houle, Michael
    Hubbell, Matthew
    Jananthan, Hayden
    Jones, Michael
    Keville, Kurt
    Klein, Anna
    Michaleas, Peter
    Milechin, Lauren
    Morales, Guillermo
    Mullen, Julie
    Prout, Andrew
    Reuther, Albert
    Rosa, Antonio
    Samsi, Siddharth
    Yee, Charles
    Kepner, Jeremy
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [2] XML programming in Python']Python
    McGrath, S
    DR DOBBS JOURNAL, 1998, 23 (02): : 82 - +
  • [3] Python']Python to learn programming
    Bogdanchikov, A.
    Zhaparov, M.
    Suliyev, R.
    2013 INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS (SCIETECH 2013), 2013, 423
  • [4] Python']Python-Bot: A Chatbot for Teaching Python']Python Programming
    Okonkwo, Chinedu Wilfred
    Ade-Ibijola, Abejide
    ENGINEERING LETTERS, 2021, 29 (01) : 25 - 34
  • [5] Python']Python: The Full Monty A Tested Semantics for the Python']Python Programming Language
    Politz, Joe Gibbs
    Martinez, Alejandro
    Milano, Matthew
    Warren, Sumner
    Patterson, Daniel
    Li, Junsong
    Chitipothu, Anand
    Krishnamurthi, Shriram
    ACM SIGPLAN NOTICES, 2013, 48 (10) : 217 - 231
  • [6] ChatGPT and Python']Python programming homework
    Ellis, Michael E.
    Casey, K. Mike
    Hill, Geoffrey
    DECISION SCIENCES-JOURNAL OF INNOVATIVE EDUCATION, 2024, 22 (02) : 74 - 87
  • [7] PYTHON']PYTHON PROGRAMMING AND VISUALIZATION FOR SCIENTISTS
    Mickelson, Sheri
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (12) : 2396 - 2397
  • [8] Python']Python Scripting: The Return to Programming
    Bakker, Mark
    GROUNDWATER, 2014, 52 (06) : 821 - 822
  • [9] BPpy: Behavioral programming in Python']Python
    Yaacov, Tom
    SOFTWAREX, 2023, 24
  • [10] synergy: a Python']Python library for calculating, analyzing and visualizing drug combination synergy
    Wooten, David J.
    Albert, Reka
    BIOINFORMATICS, 2021, 37 (10) : 1473 - 1474