This study investigates the liquid crystalline behavior, photophysical properties, and metal ion sensing capabilities of a pyrene-based imine dimer (DPyH9). The compound exhibits monotropic nematic mesophase behavior, with a glass transition at 43 degrees C, as confirmed by polarized light microscopy (PLM) and differential scanning calorimetry (DSC). Its photophysical properties, including UV-vis absorption, solvatochromic fluorescence, and acidochromism, observed through spectral shifts upon HCl addition, were systematically analyzed. Notably, DPyH9 displayed selective metal ion sensing capabilities towards Sn2+ and Cu2+ with binding constants of 4.51 x 106 M-1 and 4.03 x 107 M-1 and detection limits of 1.61 x 10-5 M (Sn2+) and 4.73 x 10-5 M (Cu2+). Fluorescence titrations revealed distinct responses: Sn2+ induced an initial quenching and an enhancement at higher concentrations, while Cu2+ caused significant fluorescence quenching. These results therefore highlight DPyH9 as a potential candidate for sensing applications and optoelectronic devices.