An Optimized Machine Learning Approach to Classify Incidents in the Canadian Construction Industry

被引:0
|
作者
Assaf, Mohamed [1 ]
Atsegbua, Joshua [2 ]
Golabchi, Hamidreza [1 ]
Mohamed, Yasser [1 ]
Lefsrud, Lianne [2 ]
Sattari, Fereshteh [2 ]
机构
[1] Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 2R3, Canada
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2R3, Canada
来源
PROCEEDINGS OF THE CANADIAN SOCIETY FOR CIVIL ENGINEERING ANNUAL CONFERENCE 2023, VOL 4, CSCE 2023 | 2025年 / 498卷
关键词
Machine learning; Text mining; Classification models; Safety management; CLASSIFICATION;
D O I
10.1007/978-3-031-61499-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning from previous construction incidents is essential to avoid coming ones. Compared to other industries, the construction industry is argued to be the most hazardous. Construction incidents do not only negatively impact humans in workplaces but also may cause substantial financial losses. To this end, an adequate interpretation and prediction of construction incidents are vital. This study contributes to the body of knowledge by providing a holistic incident evaluation model that aims to automatically classify current incidents and predict future ones. A data set of 13,153 records of incidents reported by a construction company located in Alberta, Canada, is employed in this study. The study adopts text-mining techniques to represent word vectors (attributes) that machine learning (ML) models can utilize. Moreover, the study employs shallow ML models, such as decision tree (DT), K-nearest neighbors (KNN), Random Forest (RF), and Naive Bayes. It also adopts deep ML models, such as deep neural network (DNN). Further, the study discusses the attributes that can be used to predict the severity of possible incidents, i.e., weather conditions and work packages. Consequently, it utilizes the same ML models to predict the severity of possible future incidents based on correlation analysis of the identified attributes. All of the parameters of the ML models are optimized by the grid optimization technique. Further, the results reveal that the DNN model is the best-performing ML model. The study provides the participants with a tool to classify safety records automatically and theoretically discusses the potential of forecasting possible incidents.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 50 条
  • [21] Predicting the duration of motorway incidents using machine learning
    Robert Corbally
    Linhao Yang
    Abdollah Malekjafarian
    European Transport Research Review, 16
  • [22] Predicting the duration of motorway incidents using machine learning
    Corbally, Robert
    Yang, Linhao
    Malekjafarian, Abdollah
    EUROPEAN TRANSPORT RESEARCH REVIEW, 2024, 16 (01)
  • [23] Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection
    Gupta, Shubhi
    Thakur, Sanjeev
    Gupta, Ashutosh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 14475 - 14501
  • [24] Fangorn Forest (F2): a machine learning approach to classify genes and genera in the family Geminiviridae
    Silva, Josw Cleydson F.
    Carvalho, Thales F. M.
    Fontes, Elizabeth P. B.
    Cerqueira, Fabio R.
    BMC BIOINFORMATICS, 2017, 18
  • [25] A Novel Strategy to Classify Chronic Patients at Risk: A Hybrid Machine Learning Approach
    Silva-Aravena, Fabian
    Delafuente, Hugo Nunez
    Astudillo, Cesar A.
    MATHEMATICS, 2022, 10 (17)
  • [26] Evaluation of machine learning algorithms to classify and map landforms in Antarctica
    Siqueira, Rafael G.
    Veloso, Gustavo V.
    Fernandes-Filho, Elpidio, I
    Francelino, Marcio R.
    Schaefer, Carlos Ernesto G. R.
    Correa, Guilherme R.
    EARTH SURFACE PROCESSES AND LANDFORMS, 2022, 47 (02) : 367 - 382
  • [27] Using Machine Learning Technologies to Classify and Predict Heart Disease
    Alrifaie, Mohammed F.
    Ahmed, Zakir Hussain
    Hameed, Asaad Shakir
    Mutar, Modhi Lafta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 123 - 127
  • [28] Implementation of Machine Learning algorithms to classify university academic success
    Jimenez Delgado, Efren
    Roldan Morales, Linnette
    Calvo Araya, Yesenia
    2022 17TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2022,
  • [29] Machine Learning Based Optimized Pruning Approach for Decoding in Statistical Machine Translation
    Banik, Debajyoty
    Ekbal, Asif
    Bhattacharyya, Pushpak
    IEEE ACCESS, 2019, 7 : 1736 - 1751
  • [30] Role of National Conditions in Occupational Fatal Accidents in the Construction Industry Using Interpretable Machine Learning Approach
    Koc, Kerim
    JOURNAL OF MANAGEMENT IN ENGINEERING, 2023, 39 (06)