COSDA: Covariance regularized semantic data augmentation for self-supervised visual representation learning

被引:0
|
作者
Chen, Hui
Ma, Yongqiang
Jiang, Jingjing
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Engn Res Ctr Visual Informat & Applicat, Natl Key Lab Human Machine Hybrid Augmented Intell, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-supervised visual representation learning; Contrastive learning; Semantic data augmentation;
D O I
10.1016/j.knosys.2025.113080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent contrastive learning-based self-supervised learning has seen significant improvements through employing an extensive data augmentation strategy, particularly focusing on the generation of positive pairs. However, the current techniques primarily operate at the pixel level, confined to basic spatial and color transformations, thus lacking the capability to incorporate more complex semantic alterations such as object repositioning, rotation, or color modification within the image. Consequently, the resultant positive pairs are less informative for learning features that are invariant to such semantic variations. In this work, we introduce a new methodology termed COvariance Regularized Semantic Data Augmentation (COSDA), designed to generate a diverse collection of feature embeddings that serve as positives relative to an anchor point. These generated features are intended to possess distinct semantic characteristics from the anchor point while maintaining consistent category identities, accomplished through Gaussian sampling in the deep feature space. By theoretically analyzing the scenario where the number of generated positive features approaches infinity, we establish an upper bound for the InfoNCE loss and optimize this bound without explicit feature generation. Rigorous experimental assessments, conducted on datasets of varying scales, alongside downstream tasks encompassing detection and segmentation, corroborate the efficacy of COSDA.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Self-Supervised Visual Representation Learning with Semantic Grouping
    Wen, Xin
    Zhao, Bingchen
    Zheng, Anlin
    Zhang, Xiangyu
    Qi, Xiaojuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [2] Dense Semantic Contrast for Self-Supervised Visual Representation Learning
    Li, Xiaoni
    Zhou, Yu
    Zhang, Yifei
    Zhang, Aoting
    Wang, Wei
    Jiang, Ning
    Wu, Haiying
    Wang, Weiping
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1368 - 1376
  • [3] Self-supervised learning with automatic data augmentation for enhancing representation
    Park, Chanjong
    Kim, Eunwoo
    PATTERN RECOGNITION LETTERS, 2024, 184 : 133 - 139
  • [4] MULTI-AUGMENTATION FOR EFFICIENT SELF-SUPERVISED VISUAL REPRESENTATION LEARNING
    Tran, Van Nhiem
    Huang, Chi-En
    Liu, Shen-Hsuan
    Yang, Kai-Lin
    Ko, Timothy
    Li, Yung-Hui
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [5] Can Semantic Labels Assist Self-Supervised Visual Representation Learning?
    Wei, Longhui
    Xie, Lingxi
    He, Jianzhong
    Zhang, Xiaopeng
    Tian, Qi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2642 - 2650
  • [6] ViewMix: Augmentation for Robust Representation in Self-Supervised Learning
    Das, Arjon
    Zhong, Xin
    IEEE ACCESS, 2024, 12 : 8461 - 8470
  • [7] Self-Supervised Dense Visual Representation Learning
    Ozcelik, Timoteos Onur
    Gokberk, Berk
    Akarun, Lale
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [8] Revisiting Self-Supervised Visual Representation Learning
    Kolesnikov, Alexander
    Zhai, Xiaohua
    Beyer, Lucas
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1920 - 1929
  • [9] Joint data and feature augmentation for self-supervised representation learning on point clouds
    Lu, Zhuheng
    Dai, Yuewei
    Li, Weiqing
    Su, Zhiyong
    GRAPHICAL MODELS, 2023, 129
  • [10] Self-Supervised Action Representation Learning Based on Asymmetric Skeleton Data Augmentation
    Zhou, Hualing
    Li, Xi
    Xu, Dahong
    Liu, Hong
    Guo, Jianping
    Zhang, Yihan
    SENSORS, 2022, 22 (22)