共 42 条
- [1] Si X.-S., Wang W., Hu C.-H., Et al., Remaining useful life estimation–A review on the statistical data driven approaches, Eur J Oper Res, 213, 1, pp. 1-14, (2011)
- [2] Wang J., Shao H., Xiao Y., Et al., SFDA-T: a novel source-free domain adaptation method with strong generalization ability for fault diagnosis, Adv Eng Inf, 62, (2024)
- [3] Wang B., Lei Y., Li N., Et al., A hybrid prognostics approach for estimating remaining useful life of rolling element bearings, IEEE Trans Rel, 69, 1, pp. 401-412, (2020)
- [4] Yan S., Shao H., Wang X., Few-shot class-incremental learning for system-level fault diagnosis of Wind Turbine, IEEE/ASME Transactions on Mechatronics, pp. 1-10, (2024)
- [5] Shao H., Ming Y., Liu Y., Et al., Small sample gearbox fault diagnosis based on improved deep forest in noisy environments, Nondestr Test Eval, pp. 1-22, (2024)
- [6] Lei Y., Li N., Gontarz S., Et al., A model-based method for remaining useful life prediction of machinery, IEEE Trans Rel, 65, 3, pp. 1314-1326, (2016)
- [7] Shao H., Peng J., Shao M., Et al., Multiscale prototype fusion network for industrial product surface anomaly detection and localization, IEEE Sensors J, 24, 20, pp. 32707-32716, (2024)
- [8] Shao H., Zhou X., Lin J., Et al., Few-shot cross-domain fault diagnosis of bearing driven by task-supervised ANIL, IEEE Internet Things J, 11, 13, pp. 22892-22902, (2024)
- [9] Mazaev G., Ompusunggu A.P., Tod G., Data-driven prognostics of alternating current solenoid valves, Presented at the 2020 Prognostics and Health Management Conference (PHM-Besançon), (2020)
- [10] LeCun Y., Bengio Y., Hinton G., Deep learning, Nature, 521, 7553, pp. 436-444, (2015)