Optimizing reconfigurable manufacturing system configuration selection with multi-objective grey wolf optimization

被引:0
作者
Kumar, Gaurav [1 ]
Goyal, Kapil Kumar [2 ]
Batra, N. K. [1 ]
Mehdi, Husain [3 ,4 ]
机构
[1] MM Deemed Be Univ Mullana, Dept Mech Engn, Ambala 133207, India
[2] Dr B R Ambedkar Natl Inst Technol Jalandhar, Dept Ind & Prod Engn, Jalandhar, India
[3] Meerut Inst Engn & Technol, Dept Mech Engn, Meerut, India
[4] Chitkara Univ, Inst Engn & Technol, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
来源
INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM | 2024年
基金
英国科研创新办公室;
关键词
Reconfigurable Manufacturing Systems; Configuration selection; Multi-objective optimization; Grey Wolf Optimization;
D O I
10.1007/s12008-024-02150-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reconfigurable Manufacturing Systems (RMSs) represent a pivotal paradigm in modern manufacturing, offering the flexibility to adapt to varying production demands. The configuration selection of an RMS significantly influences its performance and responsiveness to dynamic manufacturing environments. In the present work, multiple objective grey wolf optimization (MOGWO) is implemented for the optimal configuration design of an RMS. The real encoded solution assisted in maintain the feasibility of solutions and minimization of search space. The discrete set of feasible machine configurations are handled efficiently to be utilized for the RMS configuration design. The non-dominated solutions obtained by MOGWO are an asset to the manufacturing system design. The decision manager may select a suitable candidate from among the non-dominated solutions in light of the current market situation. Evolutionary algorithms generate initial populations by randomly selecting variables. At stage S-1, operation 15, with a real value of 0.6529, is assigned one of three configurations: {\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{mc}_{2}<^>{2}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{mc}_{3}<^>{2}$$\end{document},and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{mc}_{5}<^>{3}$$\end{document}}. The selected configuration is determined by multiplying the encoded solution's real value by the number of alternatives and rounding up to the nearest integer. This approach confines the search space to feasible regions, ensuring equal probability for all alternatives. The production sequence is 15 -> 1 -> 17 -> 3 -> 5, with a demand rate of 50 units per hour. Performance metrics use power indices Z and Y set to 2, with parameters w1, w2, and w3 valued at 0.5, 0.4, and 0.1, respectively.
引用
收藏
页数:16
相关论文
共 22 条
[1]   NSGA-III-based multi-objective approach for reconfigurable manufacturing system design considering single-spindle and multi-spindle modular reconfigurable machines [J].
Ameer, Muhammad ;
Dahane, Mohammed .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (5-6) :2499-2524
[2]   A multi-objective particle swarm optimisation for integrated configuration design and scheduling in reconfigurable manufacturing system [J].
Dou, Jianping ;
Li, Jun ;
Xia, Dan ;
Zhao, Xia .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (13) :3975-3995
[3]   A methodology for the reconfiguration process in manufacturing systems [J].
Garbie, Ibrahim H. .
JOURNAL OF MANUFACTURING TECHNOLOGY MANAGEMENT, 2014, 25 (06) :891-915
[4]   APPLYING SWARM INTELLIGENCE TO DESIGN THE RECONFIGURABLE FLOW LINES [J].
Goyal, K. K. ;
Jain, P. K. ;
Jain, M. .
INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2013, 12 (01) :17-26
[5]  
Goyal K.K., 2011, ANN DAAAM P, P959
[6]   Design of reconfigurable flow lines using MOPSO and maximum deviation theory [J].
Goyal, Kapil Kumar ;
Jain, Pramod Kumar .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 84 (5-8) :1587-1600
[7]   Optimal configuration selection for reconfigurable manufacturing system using NSGA II and TOPSIS [J].
Goyal, Kapil Kumar ;
Jain, P. K. ;
Jain, Madhu .
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2012, 50 (15) :4175-4191
[8]   Reconfigurable manufacturing systems [J].
Koren, Y ;
Heisel, U ;
Jovane, F ;
Moriwaki, T ;
Pritschow, G ;
Ulsoy, G ;
Van Brussel, H .
CIRP ANNALS 1999: MANUFACTURING TECHNOLOGY, VOL 48 NO 2 1999, 1999, :527-540
[9]  
Koren Y., 2010, The Global Manufacturing Revolution
[10]  
Kumar Gaurav, 2021, Recent Advances in Mechanical Engineering. Select Proceedings of ITME 2019. Lecture Notes in Mechanical Engineering (LNME), P621, DOI 10.1007/978-981-15-8704-7_76