The periodic Plateau problem and its application

被引:0
|
作者
Jaigyoung Choe [1 ]
机构
[1] Korea Institute for Advanced Study, Seoul
基金
新加坡国家研究基金会;
关键词
Free boundary; Helically periodic; Minimal surface; Plateau problem; Platonic solid;
D O I
10.1007/s10455-025-09993-0
中图分类号
学科分类号
摘要
Given a noncompact disconnected periodic curve Γ of infinite length with two components and no self-intersection in R3, it is proved that there exists a noncompact simply connected periodic minimal surface spanning Γ. As an application, it is shown that for any tetrahedron T with dihedral angles ≤90∘, there exist four embedded minimal annuli in T, which are perpendicular to ∂T along their boundary. It is also proved that every Platonic solid of R3 contains a free boundary embedded minimal surface of genus zero. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.
引用
收藏
相关论文
共 50 条
  • [21] The Perron method and the non-linear Plateau problem
    Clarke, Andrew
    Smith, Graham
    GEOMETRIAE DEDICATA, 2013, 163 (01) : 159 - 164
  • [22] Soap films: from the Plateau problem to deformable boundaries
    Bevilacqua, Giulia
    Lussardi, Luca
    Marzocchi, Alfredo
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2024, 15 (01) : 137 - 155
  • [23] Partial Plateau's problem with H-mass
    Alvarado, Enrique
    Xia, Qinglan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (01)
  • [24] Minimal Surfaces and the Plateau Problem: Numerical Methods and Applications
    Sapagovas, Mifodijus
    Buda, Vytautas
    Maskeliunas, Saulius
    Stikoniene, Olga
    Stikonas, Arturas
    INFORMATICA, 2024, 35 (02) : 401 - 420
  • [25] The Plateau problem for the Busemann–Hausdorff area in arbitrary codimension
    Pistre S.
    von der Mosel H.
    European Journal of Mathematics, 2017, 3 (4) : 953 - 973
  • [26] The Perron method and the non-linear Plateau problem
    Andrew Clarke
    Graham Smith
    Geometriae Dedicata, 2013, 163 : 159 - 164
  • [27] L2-estimate for the discrete plateau problem
    Pozzi, P
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 1763 - 1777
  • [28] The plateau problem at infinity for horizontal ends and genus 1
    Mazet, L
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) : 15 - 64
  • [29] Quasi-area functional for the Plateau-Bezier problem
    Hao, Yong-Xia
    GRAPHICAL MODELS, 2020, 112
  • [30] THE PLATEAU-BEZIER PROBLEM WITH WEAK-AREA FUNCTIONAL
    Hao, Yongxia
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (06) : 838 - 848