The periodic Plateau problem and its application

被引:0
|
作者
Jaigyoung Choe [1 ]
机构
[1] Korea Institute for Advanced Study, Seoul
基金
新加坡国家研究基金会;
关键词
Free boundary; Helically periodic; Minimal surface; Plateau problem; Platonic solid;
D O I
10.1007/s10455-025-09993-0
中图分类号
学科分类号
摘要
Given a noncompact disconnected periodic curve Γ of infinite length with two components and no self-intersection in R3, it is proved that there exists a noncompact simply connected periodic minimal surface spanning Γ. As an application, it is shown that for any tetrahedron T with dihedral angles ≤90∘, there exist four embedded minimal annuli in T, which are perpendicular to ∂T along their boundary. It is also proved that every Platonic solid of R3 contains a free boundary embedded minimal surface of genus zero. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.
引用
收藏
相关论文
共 50 条
  • [1] Solution of the Kirchhoff-Plateau Problem
    Giusteri, Giulio G.
    Lussardi, Luca
    Fried, Eliot
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (03) : 1043 - 1063
  • [2] Solution of the Kirchhoff–Plateau Problem
    Giulio G. Giusteri
    Luca Lussardi
    Eliot Fried
    Journal of Nonlinear Science, 2017, 27 : 1043 - 1063
  • [3] The discrete plateau problem: Algorithm and numerics
    Dziuk, G
    Hutchinson, JE
    MATHEMATICS OF COMPUTATION, 1999, 68 (225) : 1 - 23
  • [4] The discrete Plateau Problem: Convergence results
    Dziuk, G
    Hutchinson, JE
    MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 519 - 546
  • [5] On the numerical solution of Plateau's problem
    Harbrecht, Helmut
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (11) : 2785 - 2800
  • [6] Another approach to the heat flow for Plateau problem
    Chang, KC
    Liu, JQ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) : 46 - 70
  • [7] Numerical Analysis of the Plateau Problem by the Method of Fundamental Solutions
    Sakakibara, Koya
    Shimizu, Yuuki
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (01)
  • [8] Generic uniqueness for the Plateau problem
    Caldini, Gianmarco
    Marchese, Andrea
    Merlo, Andrea
    Steinbruechel, Simone
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 1 - 21
  • [9] An approximation method based on MRA for the quasi-Plateau problem
    Hao, Yong-Xia
    Li, Chong-Jun
    Wang, Ren-Hong
    BIT NUMERICAL MATHEMATICS, 2013, 53 (02) : 411 - 442
  • [10] An approximation method based on MRA for the quasi-Plateau problem
    Yong-Xia Hao
    Chong-Jun Li
    Ren-Hong Wang
    BIT Numerical Mathematics, 2013, 53 : 411 - 442