Identifying Ocean Submesoscale Activity From Vertical Density Profiles Using Machine Learning

被引:0
作者
Yao, Leyu [1 ]
Taylor, John R. [1 ]
Jones, Dani C. [2 ,3 ]
Bachman, Scott D. [4 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[2] Univ Michigan, Cooperat Inst Great Lakes Res CIGLR, Ann Arbor, MI USA
[3] UKRI, British Antarctic Survey, NERC, Cambridge, England
[4] Natl Ctr Atmospher Res, Boulder, CO USA
基金
英国科研创新办公室; 英国自然环境研究理事会;
关键词
oceanography; machine learning; MIXED-LAYER DEPTH; SOUTHERN-OCEAN; VARIABILITY; MESOSCALE; FRONT;
D O I
10.1029/2022EA002618
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Submesoscale eddies are important features in the upper ocean where they mediate air-sea exchanges, convey heat and tracer fluxes into ocean interior, and enhance biological production. However, due to their small size (0.1-10 km) and short lifetime (hours to days), directly observing submesoscales in the field generally requires targeted high resolution surveys. Submesoscales increase the vertical density stratification of the upper ocean and qualitatively modify the vertical density profile. In this paper, we propose an unsupervised machine learning algorithm to identify submesoscale activity using vertical density profiles. The algorithm, based on the profile classification model (PCM) approach, is trained and tested on two model-based data sets with vastly different resolutions. One data set is extracted from a large-eddy simulation (LES) in a 4 km by 4 km domain and the other from a regional model for a sector in the Southern Ocean. We show that the adapted PCM can identify regions with high submesoscale activity, as characterized by the vorticity field (i.e., where surface vertical vorticity zeta $\zeta $ is similar to Coriolis frequency f $f$ and Rossby number Ro=zeta/f similar to O(1) $Ro=\zeta /f\sim \mathcal{O}(1)$), using solely the vertical density profiles, without any additional information on the velocity, the profile location, or horizontal density gradients. The results of this paper show that the adapted PCM can be applied to data sets from different sources and provides a method to study submesoscale eddies using global data sets (e.g., CTD profiles collected from ships, gliders, and Argo floats).
引用
收藏
页数:18
相关论文
共 44 条
[1]   Mesoscale and Submesoscale Effects on Mixed Layer Depth in the Southern Ocean [J].
Bachman, S. D. ;
Taylor, J. R. ;
Adams, K. A. ;
Hosegood, P. J. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2017, 47 (09) :2173-2188
[2]   Modelling of partially-resolved oceanic symmetric instability [J].
Bachman, S. D. ;
Taylor, J. R. .
OCEAN MODELLING, 2014, 82 :15-27
[3]   Mixed layer instabilities and restratification [J].
Boccaletti, Giulio ;
Ferrari, Raffaele ;
Fox-Kemper, Baylor .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (09) :2228-2250
[4]   SURFACE MIXED AND MIXING LAYER DEPTHS [J].
BRAINERD, KE ;
GREGG, MC .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 1995, 42 (09) :1521-1543
[5]   Seasonality of submesoscale flows in the ocean surface boundary layer [J].
Buckingham, Christian E. ;
Garabato, Alberto C. Naveira ;
Thompson, Andrew F. ;
Brannigan, Liam ;
Lazar, Ayah ;
Marshall, David P. ;
Nurser, A. J. George ;
Damerell, Gillian ;
Heywood, Karen J. ;
Belcher, Stephen E. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (05) :2118-2126
[6]   The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013 [J].
Damerell, Gillian M. ;
Heywood, Karen J. ;
Thompson, Andrew F. ;
Binetti, Umberto ;
Kaiser, Jan .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (05) :3075-3089
[7]  
Dangeti P., 2017, Statistics for Machine Learning, V1st
[8]   Diurnal Evolution of Submesoscale Front and Filament Circulations [J].
Dauhajre, Daniel P. ;
McWilliams, James C. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2018, 48 (10) :2343-2361
[9]   Mixed layer depth over the global ocean:: An examination of profile data and a profile-based climatology -: art. no. C12003 [J].
de Boyer Montégut, C ;
Madec, G ;
Fischer, AS ;
Lazar, A ;
Iudicone, D .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2004, 109 (C12) :1-20
[10]   The Scale of Submesoscale Baroclinic Instability Globally [J].
Dong, Jihai ;
Fox-Kemper, Baylor ;
Zhang, Hong ;
Dong, Changming .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2020, 50 (09) :2649-2667