TOPIC MODELING FOR USER FEEDBACK DATASET

被引:0
作者
Pangastuti, Sinta septi [1 ]
Rohmatullayaly, Eneng nunuz [2 ]
Najmi, Nuroh [3 ]
机构
[1] Padjadjaran State Univ, Dept Stat, Bandung 45363, Indonesia
[2] Padjadjaran State Univ, Dept Biol, Bandung 45363, Indonesia
[3] Padjadjaran State Univ, Dept Oral Biol, Bandung 45363, Indonesia
关键词
topic modeling; Top2Vec; user experience; user feedback;
D O I
10.28919/cmbn/8932
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the era of big data, user feedback from mobile applications provides valuable insights for improving performance and user experience. However, extracting meaningful topics from large textual datasets remains a challenge. This study employs the Top2Vec model, a modern topic modeling technique, to analyze a dataset containing 15,000 user feedback entries from 15 different mobile applications across various categories. Unlike traditional methods like Latent Dirichlet Allocation (LDA), Top2Vec integrates word embeddings and clustering algorithms to identify topics based on semantic relationships. The research involves text preprocessing, embedding generation using Doc2Vec, and applying the Top2Vec algorithm to extract relevant topics. Results indicate that Top2Vec automatically determines topic numbers, offering richer and more interpretable topics compared to LDA and Embedded Topic Model (ETM). Evaluation metrics such as Coherence Score and Topic Diversity demonstrate that Top2Vec performs well, capturing significant patterns and addressing user concerns, including app glitches, performance issues, and user experience. This article highlights the effectiveness of Top2Vec in analyzing user feedback, making it a promising tool for understanding user needs and improving application development.
引用
收藏
页数:13
相关论文
共 17 条
  • [1] Aletras N., 2013, P 10 INT C COMP SEM, P13
  • [2] Angelov D, 2020, Arxiv, DOI [arXiv:2008.09470, DOI 10.48550/ARXIV.2008.09470]
  • [3] The Combination of Contextualized Topic Model and MPNet for User Feedback Topic Modeling
    Asnawi, Mohammad Hamid
    Pravitasari, Anindya Apriliyanti
    Herawan, Tutut
    Hendrawati, Triyani
    [J]. IEEE ACCESS, 2023, 11 : 130272 - 130286
  • [4] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022
  • [5] Campello Ricardo J. G. B., 2013, Advances in Knowledge Discovery and Data Mining. 17th Pacific-Asia Conference (PAKDD 2013). Proceedings, P160, DOI 10.1007/978-3-642-37456-2_14
  • [6] Topic Modeling in Embedding Spaces
    Dieng, Adji B.
    Ruiz, Francisco J. R.
    Blei, David M.
    [J]. TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2020, 8 (439-453) : 439 - 453
  • [7] A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts
    Egger, Roman
    Yu, Joanne
    [J]. FRONTIERS IN SOCIOLOGY, 2022, 7
  • [8] Grefenstette G., 1999, Syntactic Wordclass Tagging, V9, P117, DOI DOI 10.1007/978-94-015-9273-4_9
  • [9] Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey
    Jelodar, Hamed
    Wang, Yongli
    Yuan, Chi
    Feng, Xia
    Jiang, Xiahui
    Li, Yanchao
    Zhao, Liang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (11) : 15169 - 15211
  • [10] Kapadia Shashank., 2019, EVALUATE TOPIC MODEL