Fluorinated multifunctional polymer vesicles for enhanced ocular surface penetration and synergistic treatment of dry eye disease

被引:0
作者
Liu, Lu [1 ]
Chen, Yifei [1 ]
Duan, Yong [1 ]
Wang, Xin [1 ]
Chen, Qiumeng [1 ]
Yang, Yuxi [1 ]
Lu, Qunzan [2 ]
Shi, Linqi [3 ]
Lin, Quankui [1 ]
Shen, Liangliang [1 ]
机构
[1] Wenzhou Med Univ, Natl Engn Res Ctr Ophthalmol & Optometry, Sch Biomed Engn, Sch Ophthalmol & Optometry,Eye Hosp, Wenzhou 325027, Peoples R China
[2] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 325000, Zhejiang, Peoples R China
[3] Nankai Univ, Key Lab Funct Polymer Mat, State Key Lab Med Chem Biol, Inst Polymer Chem,Coll Chem,Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
NLRP3; inhibitor; ROS scavenging; Fluorinated polymer; Ocular surface penetration; Dry eye disease; Synergistic strategy; DELIVERY; DRUG; PATHOPHYSIOLOGY; INFLAMMASOME; MANAGEMENT; NANOCERIA;
D O I
10.1016/j.jconrel.2025.01.040
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current pharmacotherapy for DED is limited by a vicious inflammatory cycle in which reactive oxygen species (ROS) play a critical role. Additionally, topical eye drop therapy for DED often suffers from poor ocular availability due to multiple ocular surface barriers. Considering the key role of the ROS-NLRP3-IL-1(3 signaling axis in DED, in this investigation, fluorinated multifunctional polymer vesicles were developed for enhanced ocular surface penetration and synergistic DED therapy by combining ROS scavenging and immunomodulation. MCC950, an NLRP3-IL-1(3 inhibitor, was loaded in situ during vesicle preparation. The results demonstrated that fluorocarbon units randomly distributed in the corona layer significantly enhanced ocular surface penetration. Furthermore, the vesicle membrane, composed of polyphenylborate ester blocks, efficiently scavenged excess ROS in inflamed corneal tissue. In response to excessive ROS, a hydrophobic-to-hydrophilic conversion of the vesicle membrane facilitated the efficient release of MCC950 to modulate the NLRP3-caspase-1-IL1(3 pathway. We believe that this work will provide insightful guidance to achieve effective treatment of DED by enhancing ocular surface penetration.
引用
收藏
页码:592 / 608
页数:17
相关论文
共 53 条
[1]   In vitro dissolution testing models of ocular implants for posterior segment drug delivery [J].
Adrianto, Muhammad Faris ;
Annuryanti, Febri ;
Wilson, Clive G. ;
Sheshala, Ravi ;
Thakur, Raghu Raj Singh .
DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2022, 12 (06) :1355-1375
[2]   Reconsidering the central role of mucins in dry eye and ocular surface diseases [J].
Baudouin, Christophe ;
Rolando, Maurizio ;
Benitez Del Castillo, Jose M. ;
Messmer, Elisabeth M. ;
Figueiredo, Francisco C. ;
Irkec, Murat ;
Van Setten, Gysbert ;
Labetoulle, Marc .
PROGRESS IN RETINAL AND EYE RESEARCH, 2019, 71 :68-87
[3]   TFOS DEWS II pathophysiology report [J].
Bron, Anthony J. ;
de Paiva, Cintia S. ;
Chauhan, Sunil K. ;
Bonini, Stefano ;
Gabison, Eric E. ;
Jain, Sandeep ;
Knop, Erich ;
Markoulli, Maria ;
Ogawa, Yoko ;
Perez, Victor ;
Uchino, Yuichi ;
Yokoi, Norihiko ;
Zoukhri, Driss ;
Sullivan, David A. .
OCULAR SURFACE, 2017, 15 (03) :438-510
[4]   Assessment and management of dry eye disease [J].
Buckley, R. J. .
EYE, 2018, 32 (02) :200-203
[5]   Multifunctional Polymer Vesicles for Synergistic Antibiotic-Antioxidant Treatment of Bacterial Keratitis [J].
Chen, Qiumeng ;
Han, Xiaopeng ;
Liu, Lu ;
Duan, Yong ;
Chen, Yifei ;
Shi, Linqi ;
Lin, Quankui ;
Shen, Liangliang .
BIOMACROMOLECULES, 2023, 24 (11) :5230-5244
[6]   Dual-Atom Nanozyme Eye Drops Attenuate Inflammation and Break the Vicious Cycle in Dry Eye Disease [J].
Chu, Dandan ;
Zhao, Mengyang ;
Rong, Shisong ;
Jhe, Wonho ;
Cai, Xiaolu ;
Xiao, Yi ;
Zhang, Wei ;
Geng, Xingchen ;
Li, Zhanrong ;
Zhang, Xingcai ;
Li, Jingguo .
NANO-MICRO LETTERS, 2024, 16 (01)
[7]   Dry Eye [J].
Clayton, Janine A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (23) :2212-2223
[8]   Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950 [J].
Corcoran, Sarah E. ;
Halai, Reena ;
Cooper, Matthew A. .
PHARMACOLOGICAL REVIEWS, 2021, 73 (03) :968-1000
[9]  
Cui WY, 2024, ACS NANO, V18, P11084, DOI 10.1021/acsnano.3c11514
[10]   Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells [J].
Dai, Yiqin ;
Zhang, Jing ;
Xiang, Jun ;
Li, Yue ;
Wu, Dan ;
Xu, Jianjiang .
REDOX BIOLOGY, 2019, 21