gptools: Scalable Gaussian Process Inference with Stan

被引:0
|
作者
Hoffmann, Till [1 ]
Onnela, Jukka-Pekka [1 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, 677 Huntington Ave, Boston, MA 02115 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2025年 / 112卷 / 02期
关键词
Gaussian process; Fourier transform; sparse approximation; Stan; !text type='Python']Python[!/text; R; MODELS;
D O I
10.18637/jss.v112.i02
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gaussian processes (GPs) are sophisticated distributions to model functional data. Whilst theoretically appealing, they are computationally cumbersome except for small datasets. We implement two methods for scaling GP inference in Stan: First, a general sparse approximation using a directed acyclic dependency graph; second, a fast, exact method for regularly spaced data modeled by GPs with stationary kernels using the fast Fourier transform. Based on benchmark experiments, we offer guidance for practitioners to decide between different methods and parameterizations. We consider two real-world examples to illustrate the package. The implementation follows Stan's design and exposes performant inference through a familiar interface. Full posterior inference for ten thousand data points is feasible on a laptop in less than 20 seconds. Details on how to get started using the popular interfaces cmdstanpy for Python and cmdstanr for R are provided.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [31] Contemporary statistical inference for infectious disease models using Stan
    Chatzilena, Anastasia
    van Leeuwen, Edwin
    Ratmann, Oliver
    Baguelin, Marc
    Demiris, Nikolaos
    EPIDEMICS, 2019, 29
  • [32] Stan and BART for Causal Inference: Estimating Heterogeneous Treatment Effects Using the Power of Stan and the Flexibility of Machine Learning
    Dorie, Vincent
    Perrett, George
    Hill, Jennifer L.
    Goodrich, Benjamin
    ENTROPY, 2022, 24 (12)
  • [33] SCALABLE GAUSSIAN PROCESS ANALYSIS FOR IMPLICIT PHYSICS-BASED COVARIANCE MODELS
    Chen, Yian
    Anitescu, Mihai
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (06) : 49 - 81
  • [34] Scalable Gaussian-process regression and variable selection using Vecchia approximations
    Cao, Jian
    Guinness, Joseph
    Genton, Marc G.
    Katzfuss, Matthias
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [35] Revealing chronic disease progression patterns using Gaussian process for stage inference
    Wang, Yanfei
    Zhao, Weiling
    Ross, Angela
    You, Lei
    Wang, Hongyu
    Zhou, Xiaobo
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (02) : 396 - 405
  • [36] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    Gadd, C.
    Wade, S.
    Shah, A. A.
    MACHINE LEARNING, 2021, 110 (06) : 1105 - 1143
  • [37] PREDICTING PROJECT SUCCESS IN CONSTRUCTION USING AN EVOLUTIONARY GAUSSIAN PROCESS INFERENCE MODEL
    Cheng, Min-Yuan
    Huang, Chin-Chi
    Van Roy, Andreas Franskie
    JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 2013, 19 : S202 - S211
  • [38] Temporal Logic Inference for Fault Detection of Switched Systems With Gaussian Process Dynamics
    Chen, Gang
    Wei, Peng
    Liu, Mei
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 2187 - 2202
  • [39] Pseudo-marginal Bayesian inference for Gaussian process latent variable models
    C. Gadd
    S. Wade
    A. A. Shah
    Machine Learning, 2021, 110 : 1105 - 1143
  • [40] Bayesian Inference for Gaussian Process Classifiers with Annealing and Pseudo-Marginal MCMC
    Filippone, Maurizio
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 614 - 619