gptools: Scalable Gaussian Process Inference with Stan

被引:0
|
作者
Hoffmann, Till [1 ]
Onnela, Jukka-Pekka [1 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, 677 Huntington Ave, Boston, MA 02115 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2025年 / 112卷 / 02期
关键词
Gaussian process; Fourier transform; sparse approximation; Stan; !text type='Python']Python[!/text; R; MODELS;
D O I
10.18637/jss.v112.i02
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gaussian processes (GPs) are sophisticated distributions to model functional data. Whilst theoretically appealing, they are computationally cumbersome except for small datasets. We implement two methods for scaling GP inference in Stan: First, a general sparse approximation using a directed acyclic dependency graph; second, a fast, exact method for regularly spaced data modeled by GPs with stationary kernels using the fast Fourier transform. Based on benchmark experiments, we offer guidance for practitioners to decide between different methods and parameterizations. We consider two real-world examples to illustrate the package. The implementation follows Stan's design and exposes performant inference through a familiar interface. Full posterior inference for ten thousand data points is feasible on a laptop in less than 20 seconds. Details on how to get started using the popular interfaces cmdstanpy for Python and cmdstanr for R are provided.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [21] Wireless Traffic Prediction With Scalable Gaussian Process: Framework, Algorithms, and Verification
    Xu, Yue
    Yin, Feng
    Xu, Wenjun
    Lin, Jiaru
    Cui, Shuguang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (06) : 1291 - 1306
  • [22] GoGP: scalable geometric-based Gaussian process for online regression
    Trung Le
    Khanh Nguyen
    Vu Nguyen
    Tu Dinh Nguyen
    Dinh Phung
    Knowledge and Information Systems, 2019, 60 : 197 - 226
  • [23] Scalable Computation of Predictive Probabilities in Probit Models with Gaussian Process Priors
    Cao, Jian
    Durante, Daniele
    Genton, Marc G.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 709 - 720
  • [24] GoGP: scalable geometric-based Gaussian process for online regression
    Trung Le
    Khanh Nguyen
    Vu Nguyen
    Tu Dinh Nguyen
    Dinh Phung
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (01) : 197 - 226
  • [25] Variational Multinomial Logit Gaussian Process
    Chai, Kian Ming A.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 1745 - 1808
  • [26] CLASSIFICATION OF MULTIPLE ANNOTATOR DATA USING VARIATIONAL GAUSSIAN PROCESS INFERENCE
    Besler, Emre
    Ruiz, Pablo
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 2025 - 2029
  • [27] Local Gaussian Process Extrapolation for BART Models with Applications to Causal Inference
    Wang, Meijia
    He, Jingyu
    Hahn, P. Richard
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 724 - 735
  • [28] Approximate Inference in Related Multi-output Gaussian Process Regression
    Chiplunkar, Ankit
    Rachelson, Emmanuel
    Colombo, Michele
    Morlier, Joseph
    PATTERN RECOGNITION APPLICATIONS AND METHODS, ICPRAM 2016, 2017, 10163 : 88 - 103
  • [29] Evaluating subcontractor performance using Evolutionary Gaussian Process Inference Model
    Cheng, Min-Yuan
    Huang, Chin-Chi
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2012, 9 (02): : 527 - 532
  • [30] Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement
    Ren, Ming Jun
    Cheung, Chi Fai
    Xiao, Gao Bo
    SENSORS, 2018, 18 (11)