Extremum Seeking for the First Derivative of Nonlinear Maps: A Time-delay Approach

被引:0
作者
Li, Jianzhong [1 ,2 ]
Zhu, Yang [2 ,3 ]
Su, Hongye [2 ,3 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang, Sichuan, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou, Peoples R China
[3] Zhejiang Univ, Ningbo Innovat Ctr, Ningbo, Peoples R China
来源
2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024 | 2024年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
extremum seeking; time-delay approach to averaging; first derivative; Lyapunov method; HIGHER DERIVATIVES; SUPERHEAT CONTROL; SLOPE-SEEKING; UNKNOWN MAPS; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an extremum seeking (ES) scheme for the first derivative of an unknown nonlinear map is carried out by tailoring a demodulation signal. We further extend the time-delay approach to the stability analysis of the ES system. Specifically, a precise time-delay model is attained via the time-delay approach to averaging the original ES system. By utilizing the direct Lyapunov method, we obtain the stability conditions in the form of linear matrix inequalities (LMIs). The proposed method offers the quantitative bounds on the dither frequency and ultimate seeking error, under the postulation of a prior knowledge about the nonlinear map. Numerical simulations are provided to exemplify the effectiveness of the proposed method.
引用
收藏
页码:672 / 677
页数:6
相关论文
共 27 条
  • [1] Slope seeking: a generalization of extremum seeking
    Ariyur, KB
    Krstic, M
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2004, 18 (01) : 1 - 22
  • [2] Lie bracket approximation of extremum seeking systems
    Duerr, Hans-Bernd
    Stankovic, Milos S.
    Ebenbauer, Christian
    Johansson, Karl Henrik
    [J]. AUTOMATICA, 2013, 49 (06) : 1538 - 1552
  • [3] Averaging of linear systems with almost periodic coefficients: A time-delay approach
    Fridman, Emilia
    Zhang, Jin
    [J]. AUTOMATICA, 2020, 122 (122)
  • [4] Multivariable Newton-based extremum seeking
    Ghaffari, Azad
    Krstic, Miroslav
    Nesic, Dragan
    [J]. AUTOMATICA, 2012, 48 (08) : 1759 - 1767
  • [5] Distributed extremum-seeking control over networks of dynamically coupled unstable dynamic agents
    Guay, Martin
    Vandermeulen, Isaac
    Dougherty, Sean
    McLellan, P. James
    [J]. AUTOMATICA, 2018, 93 : 498 - 509
  • [6] Extremum-Seeking Control for Harmonic Mitigation in Electrical Grids of Marine Vessels
    Haring, Mark
    Skjong, Espen
    Johansen, Tor Arne
    Molinas, Marta
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (01) : 500 - 508
  • [7] Sampled-data extremum-seeking framework for constrained optimization of nonlinear dynamical systems
    Hazeleger, Leroy
    Nesic, Dragan
    van de Wouw, Nathan
    [J]. AUTOMATICA, 2022, 142
  • [8] Unified frameworks for sampled-data extremum seeking control: Global optimisation and multi-unit systems
    Khong, Sei Zhen
    Nesic, Dragan
    Tan, Ying
    Manzie, Chris
    [J]. AUTOMATICA, 2013, 49 (09) : 2720 - 2733
  • [9] Stability of extremum seeking feedback for general nonlinear dynamic systems
    Krstic, M
    Wang, HH
    [J]. AUTOMATICA, 2000, 36 (04) : 595 - 601
  • [10] Extremum Seeking Control for Model-Free Auto-Tuning of Powered Prosthetic Legs
    Kumar, Saurav
    Mohammadi, Alireza
    Quintero, David
    Rezazadeh, Siavash
    Gans, Nicholas
    Gregg, Robert D.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2120 - 2135