Ultralow Power Optoelectronic Memtransistors Based on Vertical WS2/In2Se3 van der Waals Heterostructures

被引:0
作者
Ma, Xiudong [1 ]
Zhou, Yumeng [1 ]
Li, Ru [2 ]
Zhao, Shangzhou [1 ]
Zhang, Mingjia [1 ,3 ,4 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Shandong, Peoples R China
[2] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Shandong, Peoples R China
[3] Ocean Univ China, Engn Res Ctr Adv Marine Phys Instruments & Equipme, Minist Educ, Qingdao 266100, Peoples R China
[4] Ocean Univ China, Qingdao Key Lab Opt & Optoelect, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
optoelectronic memtransistor; artificialsynapse; ultralow power; nonvolatility; van der Waalsheterostructure; ARTIFICIAL SYNAPSE; MEMRISTOR;
D O I
10.1021/acsami.4c21946
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Memtransistors composed of 2D van der Waals (vdW) heterostructures are crucial for constructing artificial synaptic devices and realizing neuromorphic computing. The functional integration containing ultralow power, nonvolatile memory, and biomimetic synaptic behavior endows such devices with broad prospects. Here, we develop an optoelectronic memtransistor based on the WS2/In2Se3 vdW heterostructure and realize significant optical and electrical synaptic properties, which can simulate both short-range plasticity (STP) and long-range plasticity (LTP) of biological synapses. Under optical stimulation, the device demonstrates an ultralow power consumption (only 7.7 aJ per spike) significantly lower than biological synapses, indicating the application potential in large-scale neuromorphic hardware. Combining optical and electrical stimuli, we can perform multiple logic operations by controlling the optical and electrical inputs of the WS2/In2Se3-based memtransistor. Besides, simulated recognition utilizing the Modified National Institute of Standards and Technology data set can achieve a recognition accuracy of 85.41%. Notably, this accuracy can remain above 80% even with the introduction of Gaussian noise. These results demonstrate the promising potential of WS2/In2Se3-based memtransistors in future neuromorphic computing.
引用
收藏
页码:18582 / 18591
页数:10
相关论文
共 70 条
  • [1] Kim M.-K., Lee J.-S., Ferroelectric analog synaptic transistors, Nano Lett., 19, 3, pp. 2044-2050, (2019)
  • [2] van de Burgt Y., Lubberman E., Fuller E.J., Keene S.T., Faria G.C., Agarwal S., Marinella M.J., Alec Talin A., Salleo A., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing, Nat. Mater., 16, 4, pp. 414-418, (2017)
  • [3] Luo Z., Wang Z., Guan Z., Ma C., Zhao L., Liu C., Sun H., Wang H., Lin Y., Jin X., High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing, Nat. Commun., 13, 1, (2022)
  • [4] Wang H., Guan Z., Li J., Luo Z., Du X., Wang Z., Zhao H., Shen S., Yin Y., Li X., Silicon-Compatible Ferroelectric Tunnel Junctions with a SiO<sub>2</sub>/Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> Composite Barrier as Low-Voltage and Ultra-High-Speed Memristors, Adv. Mater., 36, 15, (2024)
  • [5] Strukov D.B., Snider G.S., Stewart D.R., Williams R.S., The missing memristor found, Nature, 453, 7191, pp. 80-83, (2008)
  • [6] Kim S., Du C., Sheridan P., Ma W., Choi S., Lu W.D., Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity, Nano Lett., 15, 3, pp. 2203-2211, (2015)
  • [7] Burr G.W., Shelby R.M., Sidler S., di Nolfo C., Jang J., Boybat I., Shenoy R.S., Narayanan P., Virwani K., Giacometti E.U., Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element, IEEE Trans. Electron Devices, 62, 11, pp. 3498-3507, (2015)
  • [8] Prezioso M., Merrikh-Bayat F., Hoskins B.D., Adam G.C., Likharev K.K., Strukov D.B., Training and operation of an integrated neuromorphic network based on metal-oxide memristors, Nature, 521, 7550, pp. 61-64, (2015)
  • [9] Boybat I., Le Gallo M., Nandakumar S.R., Moraitis T., Parnell T., Tuma T., Rajendran B., Leblebici Y., Sebastian A., Eleftheriou E., Neuromorphic computing with multi-memristive synapses, Nat. Commun., 9, 1, (2018)
  • [10] Wang Z., Joshi S., Savel'ev S.E., Jiang H., Midya R., Lin P., Hu M., Ge N., Strachan J.P., Li Z., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater., 16, 1, pp. 101-108, (2017)