Prediction of Prostate Cancer Grades Using Radiomic Features

被引:0
|
作者
Yamamoto, Yasuhiro [1 ]
Haraguchi, Takafumi [3 ]
Matsuda, Kaori [1 ]
Okazaki, Yoshio [1 ]
Kimoto, Shin [1 ]
Tanji, Nozomu [2 ]
Matsumoto, Atsushi [2 ]
Kobayashi, Yasuyuki [4 ]
Mimura, Hidefumi [5 ]
Hiraki, Takao [6 ]
机构
[1] Houshasen Daiichi Hosp, Dept Radiol, Imabari, Ehime 7940054, Japan
[2] Houshasen Daiichi Hosp, Dept Urol, Imabari, Ehime 7940054, Japan
[3] St Marianna Univ, Sch Med, Dept Adv Biomed Imaging & Informat, Kawasaki, Kanagawa 2168511, Japan
[4] St Marianna Univ, Sch Med, Dept Med Informat & Commun Technol Res, Kawasaki, Kanagawa 2168511, Japan
[5] St Marianna Univ, Sch Med, Dept Radiol, Kawasaki, Kanagawa 2168511, Japan
[6] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Radiol, Okayama 7008558, Japan
关键词
prostate cancer; machine learning; prostate Imaging-Reporting and Data System; radiomics; Gleason score;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] >= 8) from intermediate or low-grade (GS <8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [31] Robustness of magnetic resonance imaging and positron emission tomography radiomic features in prostate cancer: Impact on recurrence prediction after radiation therapy
    Dutta, Arpita
    Chan, Joseph
    Haworth, Annette
    Dubowitz, David J.
    Kneebone, Andrew
    Reynolds, Hayley M.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 29
  • [32] Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features
    Simon Bernatz
    Jörg Ackermann
    Philipp Mandel
    Benjamin Kaltenbach
    Yauheniya Zhdanovich
    Patrick N. Harter
    Claudia Döring
    Renate Hammerstingl
    Boris Bodelle
    Kevin Smith
    Andreas Bucher
    Moritz Albrecht
    Nicolas Rosbach
    Lajos Basten
    Ibrahim Yel
    Mike Wenzel
    Katrin Bankov
    Ina Koch
    Felix K.-H. Chun
    Jens Köllermann
    Peter J. Wild
    Thomas J. Vogl
    European Radiology, 2020, 30 : 6757 - 6769
  • [33] Radiomic features for prostate cancer grade detection through formal verification
    Antonella Santone
    Maria Chiara Brunese
    Federico Donnarumma
    Pasquale Guerriero
    Francesco Mercaldo
    Alfonso Reginelli
    Vittorio Miele
    Andrea Giovagnoni
    Luca Brunese
    La radiologia medica, 2021, 126 : 688 - 697
  • [34] Radiomic features for prostate cancer grade detection through formal verification
    Santone, Antonella
    Brunese, Maria Chiara
    Donnarumma, Federico
    Guerriero, Pasquale
    Mercaldo, Francesco
    Reginelli, Alfonso
    Miele, Vittorio
    Giovagnoni, Andrea
    Brunese, Luca
    RADIOLOGIA MEDICA, 2021, 126 (05): : 688 - 697
  • [35] Immunohistochemistry and Radiomic Features for Survival Prediction in Small Cell Lung Cancer
    Gkika, Eleni
    Benndorf, Matthias
    Oerther, Benedict
    Mohammad, Farid
    Beitinger, Susanne
    Adebahr, Sonja
    Carles, Montserrat
    Schimek-Jasch, Tanja
    Zamboglou, Constantinos
    Frye, Bjorn C.
    Bamberg, Fabian
    Waller, Cornelius F.
    Werner, Martin
    Grosu, Anca L.
    Nestle, Ursula
    Kayser, Gian
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [36] MRI-based radiomic features for identifying recurrent prostate cancer after proton radiation therapy
    Gumus, Kazim Z.
    Contreras, Samuel Serrano
    Al-Toubat, Mohammed
    Harmon, Ira
    Hernandez, Mauricio
    Ozdemir, Savas
    Kumar, Sindhu
    Yuruk, Nurcan
    Mete, Mutlu
    Balaji, K. C.
    Bandyk, Mark
    Gopireddy, Dheeraj R.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2024, 25 (03):
  • [37] ML Models Built Using Clinical Parameters and Radiomic Features Extracted from 18F-Choline PET/CT for the Prediction of Biochemical Recurrence after Metastasis-Directed Therapy in Patients with Oligometastatic Prostate Cancer
    Urso, Luca
    Cittanti, Corrado
    Manco, Luigi
    Ortolan, Naima
    Borgia, Francesca
    Malorgio, Antonio
    Scribano, Giovanni
    Mastella, Edoardo
    Guidoboni, Massimo
    Stefanelli, Antonio
    Turra, Alessandro
    Bartolomei, Mirco
    DIAGNOSTICS, 2024, 14 (12)
  • [38] Radiomic and Dosiomic Features for the Prediction of Radiation Pneumonitis Across Esophageal Cancer and Lung Cancer
    Puttanawarut, Chanon
    Sirirutbunkajorn, Nat
    Tawong, Narisara
    Jiarpinitnun, Chuleeporn
    Khachonkham, Suphalak
    Pattaranutaporn, Poompis
    Wongsawat, Yodchanan
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [39] Additional Value of PET Radiomic Features for the Initial Staging of Prostate Cancer: A Systematic Review from the Literature
    Guglielmo, Priscilla
    Marturano, Francesca
    Bettinelli, Andrea
    Gregianin, Michele
    Paiusco, Marta
    Evangelista, Laura
    CANCERS, 2021, 13 (23)
  • [40] Early radiomic experiences in classifying prostate cancer aggressiveness using 3D local binary patterns
    Sicilia, Rosa
    Cordelli, Ermanno
    Merone, Mario
    Luperto, Elia
    Papalia, Rocco
    Iannello, Giulio
    Soda, Paolo
    2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 355 - 360