Prediction of Prostate Cancer Grades Using Radiomic Features

被引:0
|
作者
Yamamoto, Yasuhiro [1 ]
Haraguchi, Takafumi [3 ]
Matsuda, Kaori [1 ]
Okazaki, Yoshio [1 ]
Kimoto, Shin [1 ]
Tanji, Nozomu [2 ]
Matsumoto, Atsushi [2 ]
Kobayashi, Yasuyuki [4 ]
Mimura, Hidefumi [5 ]
Hiraki, Takao [6 ]
机构
[1] Houshasen Daiichi Hosp, Dept Radiol, Imabari, Ehime 7940054, Japan
[2] Houshasen Daiichi Hosp, Dept Urol, Imabari, Ehime 7940054, Japan
[3] St Marianna Univ, Sch Med, Dept Adv Biomed Imaging & Informat, Kawasaki, Kanagawa 2168511, Japan
[4] St Marianna Univ, Sch Med, Dept Med Informat & Commun Technol Res, Kawasaki, Kanagawa 2168511, Japan
[5] St Marianna Univ, Sch Med, Dept Radiol, Kawasaki, Kanagawa 2168511, Japan
[6] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Radiol, Okayama 7008558, Japan
关键词
prostate cancer; machine learning; prostate Imaging-Reporting and Data System; radiomics; Gleason score;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] >= 8) from intermediate or low-grade (GS <8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [21] Placenta Accreta Spectrum and Hysterectomy Prediction Using MRI Radiomic Features
    Leitch, Ka'Toria
    Shahedi, Maysam
    Dormer, James D.
    Do, Quyen N.
    Xi, Yin
    Lewis, Matthew A.
    Herrera, Christina L.
    Spong, Catherine Y.
    Madhuranthakam, Ananth J.
    Twickler, Diane M.
    Fei, Baowei
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [22] Biochemical recurrence prediction after radiotherapy for prostate cancer with T2w magnetic resonance imaging radiomic features
    Fernandes, Catarina Dinis
    Dinh, Cuong, V
    Walraven, Iris
    Heijmink, Stijn W.
    Smolic, Milena
    van Griethuysen, Joost J. M.
    Simoes, Rita
    Losnegard, Are
    van der Poel, Henk G.
    Pos, Floris J.
    van der Heide, Uulke A.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2018, 7 : 9 - 15
  • [23] Formal methods for prostate cancer Gleason score and treatment prediction using radiomic biomarkers
    Brunese, Luca
    Mercaldo, Francesco
    Reginelli, Alfonso
    Santone, Antonella
    MAGNETIC RESONANCE IMAGING, 2020, 66 : 165 - 175
  • [24] Prediction of Overall Survival in Cervical Cancer Patients Using PET/CT Radiomic Features
    Carlini, Gianluca
    Curti, Nico
    Strolin, Silvia
    Giampieri, Enrico
    Sala, Claudia
    Dall'Olio, Daniele
    Merlotti, Alessandra
    Fanti, Stefano
    Remondini, Daniel
    Nanni, Cristina
    Strigari, Lidia
    Castellani, Gastone
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [25] Prediction of Failure of Induction of Labor from Ultrasound Images Using Radiomic Features
    Garcia Ocana, Maria Inmaculada
    Lopez-Linares Roman, Karen
    Burgos San Cristobal, Jorge
    del Campo Real, Ana
    Macia Oliver, Ivan
    SMART ULTRASOUND IMAGING AND PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, SUSI 2019, PIPPI 2019, 2019, 11798 : 153 - 160
  • [26] Breast Cancer Molecular Subtype Prediction by Mammographic Radiomic Features
    Ma, Wenjuan
    Zhao, Yumei
    Ji, Yu
    Guo, Xinpeng
    Jian, Xiqi
    Liu, Peifang
    Wu, Shandong
    ACADEMIC RADIOLOGY, 2019, 26 (02) : 196 - 201
  • [27] Detecting localised prostate cancer using radiomic features in PSMA PET and multiparametric MRI for biologically targeted radiation therapy
    Chan, Tsz Him
    Haworth, Annette
    Wang, Alan
    Osanlouy, Mahyar
    Williams, Scott
    Mitchell, Catherine
    Hofman, Michael S.
    Hicks, Rodney J.
    Murphy, Declan G.
    Reynolds, Hayley M.
    EJNMMI RESEARCH, 2023, 13 (01)
  • [28] Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features
    Bernatz, Simon
    Ackermann, Joerg
    Mandel, Philipp
    Kaltenbach, Benjamin
    Zhdanovich, Yauheniya
    Harter, Patrick N.
    Doering, Claudia
    Hammerstingl, Renate
    Bodelle, Boris
    Smith, Kevin
    Bucher, Andreas
    Albrecht, Moritz
    Rosbach, Nicolas
    Basten, Lajos
    Yel, Ibrahim
    Wenzel, Mike
    Bankov, Katrin
    Koch, Ina
    Chun, Felix K-H
    Koellermann, Jens
    Wild, Peter J.
    Vogl, Thomas J.
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6757 - 6769
  • [29] Detecting localised prostate cancer using radiomic features in PSMA PET and multiparametric MRI for biologically targeted radiation therapy
    Tsz Him Chan
    Annette Haworth
    Alan Wang
    Mahyar Osanlouy
    Scott Williams
    Catherine Mitchell
    Michael S. Hofman
    Rodney J. Hicks
    Declan G. Murphy
    Hayley M. Reynolds
    EJNMMI Research, 13
  • [30] Deep Radiomic Analysis to Predict Gleason Score in Prostate Cancer
    Chaddad, Ahmad
    Kucharczyk, Michael J.
    Desrosiers, Christian
    Okuwobi, Idowu Paul
    Katib, Yousef
    Zhang, Mingli
    Rathore, Saima
    Sargos, Paul
    Niazi, Tamim
    IEEE ACCESS, 2020, 8 : 167767 - 167778