Exploring Memorization in Fine-tuned Language Models

被引:0
作者
Zeng, Shenglai [1 ]
Li, Yaxin [1 ]
Ren, Jie [1 ]
Liu, Yiding [2 ]
Xu, Han [1 ]
He, Pengfei [1 ]
Xing, Yue [1 ]
Wang, Shuaiqiang [2 ]
Tang, Jiliang [1 ]
Yin, Dawei [2 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
[2] Baidu Inc, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS | 2024年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Large language models (LLMs) have shown great capabilities in various tasks but also exhibited memorization of training data, raising tremendous privacy and copyright concerns. While prior works have studied memorization during pre-training, the exploration of memorization during fine-tuning is rather limited. Compared to pre-training, fine-tuning typically involves more sensitive data and diverse objectives, thus may bring distinct privacy risks and unique memorization behaviors. In this work, we conduct the first comprehensive analysis to explore language models' (LMs) memorization during fine-tuning across tasks. Our studies with open-sourced and our own fine-tuned LMs across various tasks indicate that memorization presents a strong disparity among different fine-tuning tasks. We provide an intuitive explanation of this task disparity via sparse coding theory and unveil a strong correlation between memorization and attention score distribution.
引用
收藏
页码:3917 / 3948
页数:32
相关论文
共 39 条
  • [1] Arora S., 2018, Transactions of the Association for Computational Linguistics, V6, P483, DOI [10.1162/tacla00034, DOI 10.1162/TACL_A_00034]
  • [2] Arora S, 2019, Arxiv, DOI arXiv:1502.03520
  • [3] Bai YT, 2022, Arxiv, DOI arXiv:2212.08073
  • [4] Beltagy I., 2019, arXiv, DOI [10.48550/arXiv.1903.10676, DOI 10.48550/ARXIV.1903.10676]
  • [5] Biderman S, 2023, Arxiv, DOI arXiv:2304.11158
  • [6] Carlini N, 2022, Arxiv, DOI [arXiv:2202.07646, DOI 10.48550/ARXIV.2202.07646]
  • [7] Carlini N, 2021, PROCEEDINGS OF THE 30TH USENIX SECURITY SYMPOSIUM, P2633
  • [8] Chowdhery A, 2022, Arxiv, DOI [arXiv:2204.02311, DOI 10.48550/ARXIV.2204.02311, 10.48550/arXiv.2204.02311]
  • [9] Chung HW, 2022, Arxiv, DOI [arXiv:2210.11416, DOI 10.48550/ARXIV.2210.11416]
  • [10] Deora P, 2024, Arxiv, DOI arXiv:2310.12680