AI-powered evaluation of lung function for diagnosis of interstitial lung disease

被引:0
|
作者
Gompelmann, Daniela [1 ]
Gysan, Maximilian Robert [1 ]
Desbordes, Paul [2 ]
Maes, Julie [2 ]
Van Orshoven, Karolien [2 ]
De Vos, Maarten [2 ,3 ]
Steinwender, Markus [4 ]
Helfenstein, Erich [5 ]
Marginean, Corina [6 ]
Henzi, Nicolas [7 ]
Cerkl, Peter [8 ]
Heeb, Patrick [9 ]
Keusch, Stephan [10 ]
Calderari, Gianluca [11 ]
von Boetticher, Paul [12 ]
Baumgartner, Bernhard [13 ]
Stolz, Daiana [14 ,15 ,16 ,17 ]
Simon, Marioara [18 ]
Prosch, Helmut [19 ]
Janssens, Wim [20 ,21 ]
Topalovic, Marko [2 ]
机构
[1] Med Univ Vienna, Dept Internal Med 2, Div Pulmonol, Vienna, Austria
[2] ArtiQ NV, Leuven, Belgium
[3] Katholieke Univ Leuven, ESAT Stadius Dept Dev & Regenerat, Herestr 49, B-3000 Leuven, Belgium
[4] Hosp Leoben, Leoben, Austria
[5] Klin St Anna, Lungenpraxis Hirslanden, Luzern, Switzerland
[6] Cty Clin Hosp Mures, Clin Pulm Dis Tg Mures, Targu Mures, Romania
[7] Spital Limmattal, Dept lung Dis, Schlieren, Switzerland
[8] Landeskrankenhaus Hohenems, Dept Pulmonol, Hohenems, Austria
[9] Zuercher Rehazentren Clin Wald, Pulm Med & Sleep Med Ctr, Zurich, Switzerland
[10] Univ Zuerich, Zurich, Switzerland
[11] Certora, Lugano, Switzerland
[12] Ordensklinikum Linz Elisabethinen, Pulmonol, Linz, Austria
[13] Salzkammergut Klinikum Vocklabruck, Dept Lung Dis, Vocklabruck, Austria
[14] Univ Freiburg, Clin Resp Med, Freiburg, Germany
[15] Univ Freiburg, Fac Med, Freiburg, Germany
[16] Univ Hosp Basel, Clin Resp Med & Pulm Cell Res, Basel, Switzerland
[17] Univ Hosp Basel, Dept Clin Res, Basel, Switzerland
[18] Iuliu Hatieganu Univ Med & Pharm, Cluj Napoca, Romania
[19] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Vienna, Austria
[20] Katholieke Univ Leuven, Dept Chron Dis Metab & Ageing, Leuven, Belgium
[21] Univ Hosp Leuven, Dept Resp Dis, Leuven, Belgium
关键词
Idiopathic pulmonary fibrosis; Rare lung diseases;
D O I
10.1136/thorax-2024-221537
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background The diagnosis of interstitial lung disease (ILD) can pose a challenge as the pulmonary function test (PFT) is only minimally affected at the onset. To improve early diagnosis, this study aims to explore the potential of artificial intelligence (AI) software in assisting pulmonologists with PFT interpretation for ILD diagnosis. The software provides an automated description of PFT and disease probabilities computed from an AI model. Study methods In study phase 1, a cohort of 60 patients, 30 of whom had ILD, were retrospectively diagnosed by 25 pulmonologists (8 junior physicians and 17 experienced pneumologists) by evaluating a PFT (body plethysmography and diffusion capacity) and a short medical history. The experts screened the cohort twice, without and with the aid of AI (ArtiQ.PFT, V.1.4.0, ArtiQ, BE) software and provided a primary diagnosis and up to three differential diagnoses for each case. In study phase 2, 19 pulmonologists repeated the protocol after using ArtiQ.PFT for 4-6 months. Results Overall, AI increased the diagnostic accuracy for various lung diseases from 41.8% to 62.3% in study phase 1. Focusing on ILD, AI improved the detection of lung fibrosis as the primary diagnosis from 42.8% without AI to 72.1% with AI (p<0.0001). Phase 2 yielded a similar outcome: using AI increased ILD diagnosis based on primary diagnosis (53.2% to 75.1%; p<0.0001). ILD detections without AI support significantly increased between phase 1 and phase 2 (p=0.028) but not with AI (p=0.24). Interpretation This study shows that AI-based decision support on PFT interpretation improves accurate and early ILD diagnosis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Early detection of interstitial lung disease using AI-powered spirometry
    Topalovic, M.
    Coenegrachts, T.
    Van Steenbergen, S.
    Halilovic, A.
    Maes, J.
    De Sadeleer, L.
    Janssens, W.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [2] Transbronchial lung cryobiopsy in the diagnosis of interstitial lung disease
    Keenan, Joseph
    Backer, Elliot
    Gibson, Heidi
    Cho, Roy
    Dincer, H. Erhan
    TUBERKULOZ VE TORAK-TUBERCULOSIS AND THORAX, 2019, 67 (04): : 300 - 306
  • [3] Impact of an interstitial lung disease service in the diagnosis and management of interstitial lung disease in Singapore
    Chai, Gin Tsen
    Tan, Teck Choon
    Lee, Yeong Shyan
    Kaw, Gregory J. L.
    Chuah, Khoon Leong
    Lim, Yi Jing
    Abisheganaden, John Arputhan
    Thong, Bernard Y. H.
    SINGAPORE MEDICAL JOURNAL, 2020, 61 (06) : 302 - 307
  • [4] The Importance of Diagnosis in Interstitial Lung Disease
    Roman, Javier Gomez
    ARCHIVOS DE BRONCONEUMOLOGIA, 2014, 50 (05): : 205 - 205
  • [5] Approach to the Diagnosis of Interstitial Lung Disease
    Behr, Juergen
    CLINICS IN CHEST MEDICINE, 2012, 33 (01) : 1 - +
  • [6] Challenges in the diagnosis of interstitial lung disease
    Kondoh, Yasuhiro
    RESPIRATORY INVESTIGATION, 2024, 62 (01) : 75 - 76
  • [7] Differential diagnosis of interstitial lung disease
    Boerner E.B.
    Costabel U.
    Wessendorf T.E.
    Bonella F.
    Der Pneumologe, 2018, 15 (6): : 413 - 418
  • [8] Surgical lung biopsy for differential diagnosis of interstitial lung disease
    Sevim, Tulin
    Akyil, Fatma Tokoz
    Kiral, Hakan
    Aksoy, Emine
    Akyil, Mustafa
    Vayvada, Mustafa
    Sen, Aycim
    Tezel, Cagatay
    Baysungur, Volkan
    TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2016, 24 (04): : 722 - 728
  • [9] Diagnosis and Treatment of Lung Cancer in the Setting of Interstitial Lung Disease
    Fisher, Dane A.
    Murphy, Mark C.
    Montesi, Sydney B.
    Hariri, Lida P.
    Hallowell, Robert W.
    Keane, Florence K.
    Lanuti, Michael
    Mooradian, Meghan J.
    Fintelmann, Florian J.
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2022, 60 (06) : 993 - 1002
  • [10] Radiological evaluation of interstitial lung disease
    Rohatgi, Prashant K.
    CURRENT OPINION IN PULMONARY MEDICINE, 2011, 17 (05) : 337 - 345