A Genetically Encoded Fluorescent Biosensor for Intracellular Measurement of Malonyl-CoA

被引:0
作者
Ranzau, Brodie L. [1 ]
Robinson, Tiffany D. [1 ]
Scully, Jack M. [1 ]
Kapelczak, Edmund D. [2 ]
Dean, Teagan S. [1 ]
Teslaa, Tara [2 ,3 ]
Schmitt, Danielle L. [1 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Mol Biol Inst, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Inst Quantitat & Computat Biosci, Los Angeles, CA 90095 USA
来源
ACS BIO & MED CHEM AU | 2024年 / 5卷 / 01期
基金
美国国家卫生研究院;
关键词
malonyl-CoA; biosensor; fluorescence; metabolism; fatty acid biosynthesis; LYSINE MALONYLATION; BIOSYNTHESIS; METABOLISM;
D O I
10.1021/acsbiomedchemau.4c00103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Malonyl-CoA is the essential building block of fatty acids and regulates cell function through protein malonylation and allosteric regulation of signaling networks. Accordingly, the production and use of malonyl-CoA is finely tuned by the cellular energy status. Most studies of malonyl-CoA dynamics rely on bulk approaches that take only a snapshot of the average metabolic state of a population of cells, missing out on heterogeneous differences in malonyl-CoA and fatty acid biosynthesis that could be occurring among a cell population. To overcome this limitation, we have developed a genetically encoded fluorescent protein-based biosensor for malonyl-CoA that can be used to capture malonyl-CoA dynamics in single cells. This biosensor, termed Malibu ( mal onyl-CoA i ntracellular b iosensor to u nderstand dynamics), exhibits an excitation-ratiometric change in response to malonyl-CoA binding. We first used Malibu to monitor malonyl-CoA dynamics during inhibition of fatty acid biosynthesis using cerulenin in Escherichia coli, observing an increase in Malibu response in a time- and dose-dependent manner. In HeLa cells, we used Malibu to monitor the impact of fatty acid biosynthesis inhibition on malonyl-CoA dynamics in single cells, finding that two inhibitors of fatty acid biosynthesis, cerulenin and orlistat, which inhibit different steps of fatty acid biosynthesis, increase malonyl-CoA levels. Altogether, we have developed a new genetically encoded biosensor for malonyl-CoA, which can be used to study malonyl-CoA dynamics in single cells, providing an unparalleled view into fatty acid biosynthesis.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 51 条
  • [1] Saggerson D., Malonyl-CoA, a Key Signaling Molecule in Mammalian Cells, Annu. Rev. Nutr., 28, 1, pp. 253-272, (2008)
  • [2] Zou L., Yang Y., Wang Z., Fu X., He X., Song J., Li T., Ma H., Yu T., Lysine Malonylation and Its Links to Metabolism and Diseases, Aging Dis., 14, 1, pp. 84-98, (2023)
  • [3] Colak G., Pougovkina O., Dai L., Tan M., te Brinke H., Huang H., Cheng Z., Park J., Wan X., Liu X., Yue W.W., Wanders R.J.A., Locasale J.W., Lombard D.B., de Boer V.C.J., Zhao Y., Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-Associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation [S], Mol. Cell. Proteomics, 14, 11, pp. 3056-3071, (2015)
  • [4] Nicastro R., Brohee L., Alba J., Nuchel J., Figlia G., Kipschull S., Gollwitzer P., Romero-Pozuelo J., Fernandes S.A., Lamprakis A., Vanni S., Teleman A.A., Virgilio C.D., Demetriades C., Malonyl-CoA Is a Conserved Endogenous ATP-Competitive MTORC1 Inhibitor, Nat. Cell Biol., 25, 9, pp. 1303-1318, (2023)
  • [5] Greenwald E.C., Mehta S., Zhang J., Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks, Chem. Rev., 118, 24, pp. 11707-11794, (2018)
  • [6] Choe M., Titov D.V., Genetically Encoded Tools for Measuring and Manipulating Metabolism, Nat. Chem. Biol., 18, 5, pp. 451-460, (2022)
  • [7] Nasu Y., Aggarwal A., Le G.N.T., Vo C.T., Kambe Y., Wang X., Beinlich F.R.M., Lee A.B., Ram T.R., Wang F., Gorzo K.A., Kamijo Y., Boisvert M., Nishinami S., Kawamura G., Ozawa T., Toda H., Gordon G.R., Ge S., Hirase H., Nedergaard M., Paquet M.-E., Drobizhev M., Podgorski K., Campbell R.E., Lactate Biosensors for Spectrally and Spatially Multiplexed Fluorescence Imaging, Nat. Commun., 14, 1, (2023)
  • [8] Wang W., Wei Q., Zhang J., Zhang M., Wang C., Qu R., Wang Y., Yang G., Wang J., A Ratiometric Fluorescent Biosensor Reveals Dynamic Regulation of Long-Chain Fatty Acyl-CoA Esters Metabolism, Angew. Chem., Int. Ed., 60, 25, pp. 13996-14004, (2021)
  • [9] Smith J.J., Valentino T.R., Ablicki A.H., Banerjee R., Colligan A.R., Eckert D.M., Desjardins G.A., Diehl K.L., A Genetically-Encoded Fluorescent Biosensor for Visualization of Acetyl-CoA in Live Cells, bioRxiv, (2024)
  • [10] Wang W., Wang P., Zhu L., Liu B., Wei Q., Hou Y., Li X., Hu Y., Li W., Wang Y., Jiang C., Yang G., Wang J., An Optimized Fluorescent Biosensor for Monitoring Long-Chain Fatty Acyl-CoAs Metabolism in Vivo, Biosens. Bioelectron., 247, (2024)