On the Space of Iterated Function Systems and Their Topological Stability

被引:0
作者
Arbieto, Alexander [1 ]
Trilles, Alexandre [2 ,3 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, POB 68530, BR-21945970 Rio De Janeiro, Brazil
[2] Jagiellonian Univ, Doctoral Sch Exact & Nat Sci, Ul Lojasiewicza 11, PL-30348 Krakow, Poland
[3] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Iterated function systems; Topological stability; Shadowing; Expansiveness; PROPERTY; MAPS;
D O I
10.1007/s12346-025-01250-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study iterated function systems with compact parameter space (IFS for short). We show that the space of IFS with phase space X is the hyperspace of the space of continuous maps from X to itself, which allows us to use the Hausdorff metric to define topological stability for IFS. We then prove that the concordant shadowing property is a necessary condition for topological stability and it is a sufficient condition if the IFS is expansive. Additionally, we provide an example to show that the concordant shadowing property is genuinely different from the traditional notion that, in our setting, becomes too weak.
引用
收藏
页数:17
相关论文
共 25 条
  • [1] Aoki N., 1994, North-Holland Mathematical Library, V52
  • [2] TOPOLOGICAL STABILITY FROM GROMOV-HAUSDORFF VIEW POINT
    Arbieto, Alexander
    Morales Rojas, Carlos Arnoldo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3531 - 3544
  • [3] OnWeakly Hyperbolic Iterated Function Systems
    Arbieto, Alexander
    Junqueira, Andre
    Santiago, Bruno
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01): : 111 - 140
  • [4] Shadowing for infinite dimensional dynamics and exponential trichotomies
    Backes, Lucas
    Dragicevic, Davor
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (03) : 863 - 884
  • [5] Shadowing for Nonautonomous Dynamics
    Backes, Lucas
    Dragicevic, Davor
    [J]. ADVANCED NONLINEAR STUDIES, 2019, 19 (02) : 425 - 436
  • [6] Barnsley M. F., 2014, Fractals everywhere
  • [7] CHEN L, 1992, P AM MATH SOC, V115, P573
  • [8] Topological stability for functional dynamics
    Chu, Hahng-Yun
    Ku, Se-Hyun
    Nguyen, Sang Hong Van
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [9] Falconer K., 2004, Fractal Geometry: Mathmatical Foundations and Applications
  • [10] Glavan V, 2009, FIXED POINT THEORY, V10, P229