共 35 条
- [1] Chen X., Chen X., Zhou W., Zhang J., Yao W., The heat source layout optimization using deep learning surrogate modeling, Struct. Multidiscip. Optim., 62, 6, pp. 3127-3148, (2020)
- [2] Emam M., Ookawara S., Ahmed M., Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: experimental investigations, Renew. Energy, 141, pp. 322-339, (2019)
- [3] Wu B., Kim D.-S., Han B., Palczynska A., Gromala P.J., Thermal deformation analysis of automotive electronic control units subjected to passive and active thermal conditions, International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, pp. 1-6, (2015)
- [4] Le Niliot C., Lefevre F., A method for multiple steady line heat sources identification in a diffusive system: application to an experimental 2D problem, Int. J. Heat Mass Transf., 44, 7, pp. 1425-1438, (2001)
- [5] Yang C.-Y., The determination of two heat sources in an inverse heat conduction problem, Int. J. Heat Mass Transf., 42, 2, pp. 345-356, (1999)
- [6] Shuai Y., Zhang X., Qing H., Tan H.-P., Inversion research on temperature field with nonlinear multiple heat source using I-DEAS, Yuhang Xuebao, 32, 9, pp. 2088-2095, (2011)
- [7] Morimoto M., Fukami K., Zhang K., Fukagata K., Generalization techniques of neural networks for fluid flow estimation, Neural Comput. & Applic., 34, 5, pp. 3647-3669, (2022)
- [8] Zhou X., Dong C., Zhao C., Bai X., Temperature-field reconstruction algorithm based on reflected sigmoidal radial basis function and QR decomposition, Appl. Therm. Eng., 171, (2020)
- [9] Chen X., Gong Z., Zhao X., Zhou W., Yao W., A machine learning surrogate modeling benchmark for temperature field reconstruction of heat source systems. SCIENCE CHINA, Inf. Sci., 66, 5, (2023)
- [10] Yang S., Yao W., Zhu L.-F., Ke L.-L., Predicting the temperature field of composite materials under a heat source using deep learning, Compos. Struct., 321, pp. 0263-8223, (2023)