Addressing the challenges of integrating digital health technologies to measure patient-centred outcomes in clinical registries

被引:0
作者
Marra, Caroline [1 ]
Chico, Tim [2 ,3 ,4 ]
Alexandrow, April [1 ]
Dixon, Will G. [5 ]
Briffa, Norman [6 ,7 ]
Rainaldi, Erin [1 ]
Little, Max A. [4 ,8 ]
Size, Kristin [1 ]
Tsanas, Athanasios [9 ]
Franklin, Joseph B. [1 ]
Kapur, Ritu [1 ,10 ]
Grice, Helen [11 ]
Gariban, Anwar [11 ]
Ellery, Joy [11 ]
Sudlow, Cathie [4 ]
Abernethy, Amy P. [1 ]
Morris, Andrew [4 ]
机构
[1] Verily Life Sci, South San Francisco, CA 94080 USA
[2] Univ Sheffield, Sch Med & Populat Hlth, Clin Med, Sheffield, England
[3] British Heart Fdn Data Sci Ctr, London, England
[4] Hlth Data Res, London, England
[5] Univ Manchester, Div Informat Imaging & Data Sci, Manchester, England
[6] Univ Sheffield, Sheffield Teaching Hosp, NHSTrust, Sheffield, England
[7] British Heart Valve Soc, Swaffham, England
[8] Univ Birmingham, Sch Comp Sci, Birmingham, England
[9] Univ Edinburgh, Edinburgh Med Sch, Edinburgh, Scotland
[10] Radboud Univ Nijmegen, Med Ctr, Dept Neurol, Nijmegen, Netherlands
[11] British Heart Fdn Data Sci Ctr, London, England
来源
LANCET DIGITAL HEALTH | 2025年 / 7卷 / 03期
关键词
D O I
10.1016/S2589-7500(24)00223-1
中图分类号
R-058 [];
学科分类号
摘要
Longitudinal patient registries generate important evidence for advancing clinical care and the regulatory evaluation of health-care products. Most national registries rely on data collected as part of routine clinical encounters, an approach that does not capture real-world, patient-centred outcomes, such as physical activity, fatigue, ability to do daily tasks, and other indicators of quality of life. Digital health technologies that obtain such real-world data could greatly enhance patient registries but unresolved challenges have so far prevented their broad adoption. Based on our experience implementing digital health technologies in registries and observational studies, we propose potential solutions to three practical challenges we have repeatedly encountered: determining what to measure digitally, selecting the appropriate device, and ensuring representativeness and engagement over time. We describe the example of a hypothetical patient registry for valvular heart disease, a condition for which there is substantial variation in treatment selection and postintervention outcomes, and for which patient-centred outcome data are urgently needed to inform clinical care guidelines and health-service commissioning.
引用
收藏
页码:e225 / e231
页数:7
相关论文
共 37 条
  • [1] Agency for Healthcare Research and Quality, Registries for evaluating patient outcomes: a user's guide
  • [2] The Project Baseline Health Study: a step towards a broader mission to map human health
    Arges, Kristine
    Assimes, Themistocles
    Bajaj, Vikram
    Balu, Suresh
    Bashir, Mustafa R.
    Beskow, Laura
    Blanco, Rosalia
    Califf, Robert
    Campbell, Paul
    Carin, Larry
    Christian, Victoria
    Cousins, Scott
    Das, Millie
    Dockery, Marie
    Douglas, Pamela S.
    Dunham, Ashley
    Eckstrand, Julie
    Fleischmann, Dominik
    Ford, Emily
    Fraulo, Elizabeth
    French, John
    Gambhir, Sanjiv S.
    Ginsburg, Geoffrey S.
    Green, Robert C.
    Haddad, Francois
    Hernandez, Adrian
    Hernandez, John
    Huang, Erich S.
    Jaffe, Glenn
    King, Daniel
    Koweek, Lynne H.
    Langlotz, Curtis
    Liao, Yaping J.
    Mahaffey, Kenneth W.
    Marcom, Kelly
    Marks, William J.
    Maron, David
    McCabe, Reid
    McCall, Shannon
    McCue, Rebecca
    Mega, Jessica
    Miller, David
    Muhlbaier, Lawrence H.
    Munshi, Rajan
    Newby, L. Kristin
    Pak-Harvey, Ezra
    Patrick-Lake, Bray
    Pencina, Michael
    Peterson, Eric D.
    Rodriguez, Fatima
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [3] Providing 'the bigger picture': benefits and feasibility of integrating remote monitoring from smartphones into the electronic health record: Findings from the Remote Monitoring of Rheumatoid Arthritis (REMORA) study
    Austin, Lynn
    Sharp, Charlotte A.
    van der Veer, Sabine N.
    Machin, Matthew
    Humphreys, John
    Mellor, Peter
    McCarthy, Jill
    Ainsworth, John
    Sanders, Caroline
    Dixon, William G.
    [J]. RHEUMATOLOGY, 2020, 59 (02) : 367 - 378
  • [4] British Heart Foundation Data Science Centre, 2022, Zenodo, DOI [10.5281/ZENODO.5827260, DOI 10.5281/ZENODO.5827260]
  • [5] Canali S, 2022, PLOS DIGIT HEALTH, V1, DOI 10.1371/journal.pdig.0000104
  • [6] Too old for technology? Use of wearable healthcare devices by older adults and their willingness to share health data with providers
    Chandrasekaran, Ranganathan
    Katthula, Vipanchi
    Moustakas, Evangelos
    [J]. HEALTH INFORMATICS JOURNAL, 2021, 27 (04)
  • [7] Wrist-worn sensor-based measurements for drug effect detection with small samples in people with Lewy Body Dementia
    Chen, Chen
    Kowahl, Nathan R.
    Rainaldi, Erin
    Burq, Maximilien
    Munsie, Leanne M.
    Battioui, Chakib
    Wang, Jian
    Biglan, Kevin
    Marks Jr., William J.
    Kapur, Ritu
    [J]. PARKINSONISM & RELATED DISORDERS, 2023, 109
  • [8] Evaluating automated electronic case report form data entry from electronic health records
    Cheng, Alex C. C.
    Banasiewicz, Mary K. K.
    Johnson, Jakea D. D.
    Sulieman, Lina
    Kennedy, Nan
    Delacqua, Francesco
    Lewis, Adam A. A.
    Joly, Meghan M. M.
    Bistran-Hall, Amanda J. J.
    Collins, Sean
    Self, Wesley H. H.
    Shotwell, Matthew S. S.
    Lindsell, Christopher J. J.
    Harris, Paul A. A.
    [J]. JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE, 2022, 7 (01)
  • [9] Patient-defined goals for the treatment of severe aortic stenosis: a qualitative analysis
    Coylewright, Megan
    Palmer, Roseanne
    O'Neill, Elizabeth S.
    Robb, John F.
    Fried, Terri R.
    [J]. HEALTH EXPECTATIONS, 2016, 19 (05) : 1036 - 1043
  • [10] Deloitte, 2022, Digital consumer trends 2022: device usage