Nutrient recovery by microalgae in aqueous product of hydrothermal carbonization of dairy manure

被引:3
作者
Silva, Nicholas A. [1 ]
Glover, Callan J. [1 ]
Hiibel, Sage R. [1 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, 1664 N Virginia St,MS 388, Reno, NV 89557 USA
来源
CLEANER WASTE SYSTEMS | 2023年 / 6卷
基金
美国国家科学基金会;
关键词
Algal cultivation; Nutrient recovery; Hydrothermal carbonization; Water treatment; Waste valorization; Sustainability; WASTE-WATER; CULTIVATION; SPIRULINA; PROTEIN; LIQUEFACTION; HYDROCHAR; NITROGEN; BIOMASS; GROWTH; PHASE;
D O I
10.1016/j.clwas.2023.100110
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrothermal carbonization (HTC) is an emerging technology for energy recovery from wet biomass waste streams, including dairy manure. The HTC aqueous product (HAP) contains organic compounds and nutrients, requiring further treatment prior to environmental discharge. The goal of this study was to evaluate nutrient removal from dairy manure HAP using four species of microalgae: Chlamydomonas reinhardtii, Chlorella vulgaris, Arthrospira maxima, and Scenedesmus obliquus. The optimal HAP concentration for all species was 5% with little to no growth observed at lower dilutions. The highest nutrient removal occurred with A. maxima with > 93%, 33%, 81%, and 50% removal of NH3, NO3- , total nitrogen (TN), and total phosphorus (TP), respectively. Nutrient removal with the other species ranged from 35% to 82% of NH3, 29% to 35% of NO3- , 12% to 34% of TN, and 8% to78% of TP. Integrating HTC with microalgae cultivation is a promising treatment method for combined energy and nutrient recovery from dairy manure.
引用
收藏
页数:8
相关论文
共 54 条
[1]   Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and bio-methane production [J].
Ahmed, Mostafa ;
Andreottola, Gianni ;
Elagroudy, Sherien ;
Negm, Mohamed Shaaban ;
Fiori, Luca .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 281
[2]   Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae [J].
Alba, Laura Garcia ;
Torri, Cristian ;
Fabbri, Daniele ;
Kersten, Sascha R. A. ;
Brilman, Derk W. F. .
CHEMICAL ENGINEERING JOURNAL, 2013, 228 :214-223
[3]  
[Anonymous], 2017, Annexes to the Inventory of U . S . GHG Emissions and Sinks ANNEX 1 Key Category Analysis, P1
[4]   Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction [J].
Barreiro, Diego Lopez ;
Bauer, Manuel ;
Hornung, Ursel ;
Posten, Clemens ;
Kruse, Andrea ;
Prins, Wolter .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2015, 9 :99-106
[5]   Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth [J].
Belete, Yonas Zeslase ;
Leu, Stefan ;
Boussiba, Sammy ;
Zorin, Boris ;
Posten, Clemens ;
Thomsen, Laurenz ;
Wang, Song ;
Gross, Amit ;
Bernstein, Roy .
BIORESOURCE TECHNOLOGY, 2019, 290
[6]   Life cycle analysis of hydrothermal carbonization of olive mill waste: Comparison with current management approaches [J].
Benavente, Veronica ;
Fullana, Andres ;
Berge, Nicole D. .
JOURNAL OF CLEANER PRODUCTION, 2017, 142 :2637-2648
[7]   Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes [J].
Berge, Nicole D. ;
Li, Liang ;
Flora, Joseph R. V. ;
Ro, Kyoung S. .
WASTE MANAGEMENT, 2015, 43 :203-217
[8]   Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process [J].
Biller, P. ;
Ross, A. B. ;
Skill, S. C. ;
Lea-Langton, A. ;
Balasundaram, B. ;
Hall, C. ;
Riley, R. ;
Llewellyn, C. A. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2012, 1 (01) :70-76
[9]   Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content [J].
Biller, P. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :215-225
[10]   Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N [J].
Chen, Wei-Hsin ;
Wu, Zih-Ying ;
Chang, Jo-Shu .
BIORESOURCE TECHNOLOGY, 2014, 155 :245-251