Recently, there has been a growing interest in new permanent magnet (PM) motor topologies. However, these newly developed PM motors are still in their early design stages and face various challenges. In order to overcome these drawbacks, further development of these motor topologies is necessary. One such new motor topology is the ring winding axial flux permanent magnet (RWAFPM) motor. Enhancing the performance of this motor requires optimising its geometry, which can be a time-consuming process when using the three-dimensional (3D) finite element method (FEM). It is essential to propose a two-dimensional model that offers faster processing but lower accuracy to address this issue compared to 3D FEM for this motor. Due to the three-dimensional structure of ring-winding axial flux machine|axial flux motors, creating a two-dimensional (2D) model for this motor presents a significant challenge. In this article, while studying the RWAFPM motor, the simplifications to the motor's geometry have been proposed in order to create a 2D model that provides sufficient accuracy as a substitute for 3D FEM. To validate our findings, the Schwarz-Christoffel conformal mapping technique has been employed to extract the modelling results. Finally, these findings have been compared with the outcomes obtained from the 3D simulation. Validation. Validation of 3D finite element results has been done by experimental results.