On the uniqueness and stability of solutions to the control problems for the electron drift-diffusion model

被引:0
|
作者
Brizitskii, R. V. [1 ]
Maksimova, N. N. [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Far East Branch, Ul Radio 7, Vladivostok 690041, Russia
[2] Amur State Univ, Dept Math Anal & Modeling, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
[3] Amur State Univ, Lab Math Modeling Complex Phys & Biol Syst, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
来源
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI | 2025年 / 35卷 / 01期
关键词
optimality system; uniqueness of the optimal solution; electron drift-diffusion model; polar inhomogeneous dielectric charging model; control problem; local stability estimates; CHARGING PROCESSES; FERROELECTRICS; SIMULATION; HEAT; SEM;
D O I
10.35634/vm250102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The issues of uniqueness and stability of solutions to the control problems for the model of electron-induced charging of an inhomogeneous polar dielectric are studied. Sufficient conditions for the uniqueness and stability of optimal solutions to the considered extremum problems are established, and the local estimates of their stability with respect to small perturbations of the cost functionals are derived.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 28 条
  • [21] Impact of quantum mechanical tunneling on off-leakage current in double-gate MOSFET using a quantum drift-diffusion model
    Jaud, MA
    Barraud, S
    Le Carval, G
    NSTI NANOTECH 2004, VOL 2, TECHNICAL PROCEEDINGS, 2004, : 17 - 20
  • [22] Theoretical study of carrier transport with quantum confinement effects in GaN HEMT by the Schrödinger-equation modulated drift-diffusion model
    Huang, Qinyi
    Li, Erping
    Duan, Huali
    Tian, Liang
    Ma, Hanzhi
    Xu, Yuehang
    Chen, Wenchao
    MICROELECTRONICS JOURNAL, 2025, 160
  • [23] Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition
    R. V. Brizitskii
    Zh. Yu. Saritskaya
    Computational Mathematics and Mathematical Physics, 2016, 56 : 2011 - 2022
  • [24] Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation
    Alekseev G.V.
    Brizitskii R.V.
    Saritskaya Z.Y.
    Journal of Applied and Industrial Mathematics, 2016, 10 (02) : 155 - 167
  • [25] Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition
    Brizitskii, R. V.
    Saritskaya, Zh. Yu.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (12) : 2011 - 2022
  • [26] Self-consistent drift-diffusion-reaction model for the electron beam interaction with dielectric samples
    Raftari, B.
    Budko, N. V.
    Vuik, C.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (20)
  • [27] A Method of Lower and Upper Solutions for Control Problems and Application to a Model of Bone Marrow Transplantation
    Parajdi, Lorand Gabriel
    Precup, Radu
    Haplea, Ioan Stefan
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2023, 33 (03) : 409 - 418
  • [28] A DEGENERATE DIFFUSION-REACTION MODEL OF AN AMENSALISTIC BIOFILM CONTROL SYSTEM: EXISTENCE AND SIMULATION OF SOLUTIONS
    Khassehkhan, Hassan
    Efendiev, Messoud A.
    Eberl, Hermann J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (02): : 371 - 388