On the uniqueness and stability of solutions to the control problems for the electron drift-diffusion model

被引:0
|
作者
Brizitskii, R. V. [1 ]
Maksimova, N. N. [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Far East Branch, Ul Radio 7, Vladivostok 690041, Russia
[2] Amur State Univ, Dept Math Anal & Modeling, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
[3] Amur State Univ, Lab Math Modeling Complex Phys & Biol Syst, Ignatyevskoye Shosse 21, Blagoveshchensk 675027, Russia
来源
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI | 2025年 / 35卷 / 01期
关键词
optimality system; uniqueness of the optimal solution; electron drift-diffusion model; polar inhomogeneous dielectric charging model; control problem; local stability estimates; CHARGING PROCESSES; FERROELECTRICS; SIMULATION; HEAT; SEM;
D O I
10.35634/vm250102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The issues of uniqueness and stability of solutions to the control problems for the model of electron-induced charging of an inhomogeneous polar dielectric are studied. Sufficient conditions for the uniqueness and stability of optimal solutions to the considered extremum problems are established, and the local estimates of their stability with respect to small perturbations of the cost functionals are derived.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 28 条
  • [1] On the uniqueness of a solution to the multiplicative control problem for the electron drift-diffusion model
    Brizitskii, Roman Viktorovich
    Maksimova, Nadezhda Nikolaevna
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2024, 34 (01): : 3 - 18
  • [2] Inverse Problems for the Diffusion-Drift Model of Charging of an Inhomogeneous Polar Dielectric
    Brizitskii, R. V.
    Maksimova, N. N.
    Maslovskaya, A. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (09) : 1685 - 1699
  • [3] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Lei, Wenyu
    Piani, Stefano
    Farrell, Patricio
    Rotundo, Nella
    Heltai, Luca
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (02)
  • [4] ON THE EXISTENCE OF SOLUTIONS FOR A DRIFT-DIFFUSION SYSTEM ARISING IN CORROSION MODELING
    Chainais-Hillairet, Claire
    Lacroix-Violet, Ingrid
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (01): : 77 - 92
  • [5] A hybrid MPI/OpenMP parallelization method for a quantum drift-diffusion model
    Sho, Shohiro
    Odanaka, Shinji
    2017 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2017), 2017, : 33 - 36
  • [6] A Finite-Volume Scheme for the Multidimensional Quantum Drift-Diffusion Model for Semiconductors
    Chainais-Hillairet, Claire
    Gisclon, Marguerite
    Juengel, Ansgar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1483 - 1510
  • [7] Calibration of drift-diffusion model in quasi-ballistic transport region for FinFETs
    Shen, Lei
    Di, Shaoyan
    Yin, Longxiang
    Liu, Xiaoyan
    Du, Gang
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (06)
  • [8] Solution map analysis of a multiscale Drift-Diffusion model for organic solar cells
    Verri, Maurizio
    Porro, Matteo
    Sacco, Riccardo
    Salsa, Sandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 331 : 281 - 308
  • [9] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Tomoko Shimada
    Shinji Odanaka
    Journal of Computational Electronics, 2008, 7 : 485 - 493
  • [10] A numerical method for a transient quantum drift-diffusion model arising in semiconductor devices
    Shimada, Tomoko
    Odanaka, Shinji
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2008, 7 (04) : 485 - 493