Integrated physiological, transcriptomic and metabolomic analyses reveal potential mechanisms of potato tuber dormancy release

被引:0
作者
Liu, Hao [1 ,2 ]
Wang, Hongyang [3 ]
Feng, Youhong [1 ]
Yang, Yan [1 ]
Feng, Cai [4 ]
Li, Junhua [1 ]
Zaman, Qamar ur [1 ,5 ]
Kong, Yunxin [1 ]
Fahad, Shah [6 ]
Deng, Gang [1 ]
机构
[1] Yunnan Univ, Sch Agr, Kunming, Yunnan, Peoples R China
[2] Southwest United Grad Sch, Kunming, Peoples R China
[3] Yunnan Normal Univ, Yunnan Key Lab Potato Biol, Kunming, Yunnan, Peoples R China
[4] Yunnan Univ, Sch Ecol & Environm Sci, Kunming, Yunnan, Peoples R China
[5] Univ Lahore, Dept Environm Sci, Lahore, Pakistan
[6] Abdul Wali Khan Univ, Dept Agron, Mardan, Pakistan
基金
中国国家自然科学基金;
关键词
NITRATE REDUCTASE-ACTIVITY; GLUTAMINE-SYNTHETASE; SPROUT GROWTH; GENE; L; GLUTATHIONE; ACID; EXPRESSION; SUCROSE; PLANTS;
D O I
10.1111/ppl.70081
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A3 and the germination inhibitor chlorpropham. The results revealed that the contents of reducing reducing sugar, sucrase, glutamine synthetase, and nitrate reductase were increased in the dormancy release stages, whereas the contents of sucrose and starch were decreased, leading to a change in the phenotype of the potato tuber bud eyes. According to transcriptomic and metabolomic investigations, four metabolomic pathways were impacted by the dormancy release process. Zeatin biosynthesis was identified in both potato varieties in the dormant release stage (trans-zeatin riboside, isopentenyl adenosine, 5 '-methylthioadenosine, IPT, CYP735A, CKX, and UGT73C); glutathione metabolism was identified in short-dormant potato varieties ((5-L-Glutamyl)-L-amino acid, oxidized glutathione, GPX, IDH1, GGT1_5, and GST); and the pentose phosphate pathway (D-Xylulose 5-phosphate, ribose 1-phosphate, PGD, and RPIA) and the phenylpropanoid biosynthesis (caffeic acid, sinapine, CYP98A, and CSE) were identified in long-dormant potato varieties. In conclusion, the four pathways mentioned above involve DEGs and DEMs that are crucial to the control of tuber dormancy release. This work offers a theoretical foundation and useful recommendations for potato tuber quality improvement and molecular breeding.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Integrated physiological, transcriptomic and metabolomic analyses provide insights into phosphorus-mediated cadmium detoxification in Salix caprea roots
    Li, Ao
    Wang, Yuancheng
    Li, Xia
    Yin, Jiahui
    Li, Yadong
    Hu, Yaofang
    Zou, Junzhu
    Liu, Junxiang
    Sun, Zhenyuan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 211
  • [22] Integrated metabolomic and transcriptomic analyses reveal anthocyanin biosynthesis mechanisms and the regulatory role of LjAN2 in Lonicera japonica
    Tan, Zhengwei
    Lu, Dandan
    Li, Lei
    Yu, Yongliang
    Su, Xiaoyu
    Sun, Yao
    Cao, Yiwen
    Li, Chunming
    Dong, Wei
    Yang, Hongqi
    Yang, Qing
    An, Sufang
    Liang, Huizhen
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 223
  • [23] Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra
    Yu, Niu
    Chen, Zhaoli
    Yang, Jinchang
    Li, Rongsheng
    Zou, Wentao
    TREE PHYSIOLOGY, 2021, 41 (06) : 1087 - 1102
  • [24] Integrated metabolomic and transcriptomic analyses reveal the roles of alanine, aspartate and glutamate metabolism and glutathione metabolism in response to salt stress in tomato
    Liu, Yue
    Zheng, Jinhui
    Ge, Lianjing
    Tang, Huimeng
    Hu, Jinxiang
    Li, Xiuming
    Wang, Xiaoyun
    Zhang, Yan
    Shi, Qinghua
    SCIENTIA HORTICULTURAE, 2024, 328
  • [25] Comparative physiological, biochemical and transcriptomic analyses to reveal potential regulatory mechanisms in response to starvation stress in Cipangopaludina chinensis
    Yuan, Chang
    Zhou, Kangqi
    Pan, Xianhui
    Wang, Dapeng
    Zhang, Caiqun
    Lin, Yong
    Chen, Zhong
    Qin, Junqi
    Du, Xuesong
    Huang, Yin
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2024, 52
  • [26] Transcriptomic and Metabolomic Analyses Reveal Response Mechanisms of Sinonovacula Constricta to Saline-Alkalinity Stresses
    Yang, Min
    Han, Yuting
    Chang, Yujie
    Li, Chengbo
    Niu, Donghong
    MARINE BIOTECHNOLOGY, 2025, 27 (02)
  • [27] Integrated Transcriptomic and Metabolomic Analyses Reveal the Effects of Grafting on Special Metabolites of Acanthopanax senticosus Leaves
    Wang, Qi
    Deng, Kedan
    Ai, Jun
    Wang, Yingping
    Wang, Yougui
    Ren, Yueying
    Zhang, Nanqi
    MOLECULES, 2023, 28 (12):
  • [28] Integrated Metabolomic and Transcriptomic Analyses Reveal the Basis for Carotenoid Biosynthesis in Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots
    Ren, Qingming
    Zhen, Xiaoxi
    Gao, Huiyu
    Liang, Yinpei
    Li, Hongying
    Zhao, Juan
    Yin, Meiqiang
    Han, Yuanhuai
    Zhang, Bin
    METABOLITES, 2022, 12 (11)
  • [29] Transcriptomic and Metabolomic Analyses Reveal the Key Genes Related to Shade Tolerance in Soybean
    Jiang, Aohua
    Liu, Jiaqi
    Gao, Weiran
    Ma, Ronghan
    Zhang, Jijun
    Zhang, Xiaochun
    Du, Chengzhang
    Yi, Zelin
    Fang, Xiaomei
    Zhang, Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [30] StSnRK1.1 protein kinase positively regulates tuber dormancy release of potato
    Zhu, Liping
    Zhang, Ning
    Wang, Kaitong
    Luo, Yu
    Wei, Han
    Si, Huaijun
    SCIENTIA HORTICULTURAE, 2024, 337