SpatialCVGAE: Consensus Clustering Improves Spatial Domain Identification of Spatial Transcriptomics Using VGAE

被引:1
作者
Niu, Jinyun [1 ]
Zhu, Fangfang [2 ]
Fang, Donghai [1 ]
Min, Wenwen [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Peoples R China
[2] Yunnan Open Univ, Sch Hlth & Nursing, Kunming 650599, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatial transcriptomics; Spatial domain; Consensus clustering; Graph neural network; GENE-EXPRESSION; VISUALIZATION; ARCHITECTURE; SEQ;
D O I
10.1007/s12539-024-00676-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The advent of spatially resolved transcriptomics (SRT) has provided critical insights into the spatial context of tissue microenvironments. Spatial clustering is a fundamental aspect of analyzing spatial transcriptomics data. However, spatial clustering methods often suffer from instability caused by the sparsity and high noise in the SRT data. To address this challenge, we propose SpatialCVGAE, a consensus clustering framework designed for SRT data analysis. SpatialCVGAE adopts the expression of high-variable genes from different dimensions along with multiple spatial graphs as inputs to variational graph autoencoders (VGAEs), learning multiple latent representations for clustering. These clustering results are then integrated using a consensus clustering approach, which enhances the model's stability and robustness by combining multiple clustering outcomes. Experiments demonstrate that SpatialCVGAE effectively mitigates the instability typically associated with non-ensemble deep learning methods, significantly improving both the stability and accuracy of the results. Compared to previous non-ensemble methods in representation learning and post-processing, our method fully leverages the diversity of multiple representations to accurately identify spatial domains, showing superior robustness and adaptability. All code and public datasets used in this paper are available at https://github.com/wenwenmin/SpatialCVGAE.
引用
收藏
页码:497 / 518
页数:22
相关论文
共 46 条
[1]   Deciphering cell-cell interactions and communication from gene expression [J].
Armingol, Erick ;
Officer, Adam ;
Harismendy, Olivier ;
Lewis, Nathan E. .
NATURE REVIEWS GENETICS, 2021, 22 (02) :71-88
[2]   Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration [J].
Asp, Michaela ;
Bergenstrahle, Joseph ;
Lundeberg, Joakim .
BIOESSAYS, 2020, 42 (10)
[3]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[4]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[5]   Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis [J].
Buchan, Jillian G. ;
Alvarado, David M. ;
Haller, Gabe E. ;
Cruchaga, Carlos ;
Harms, Matthew B. ;
Zhang, Tianxiao ;
Willing, Marcia C. ;
Grange, Dorothy K. ;
Braverman, Alan C. ;
Miller, Nancy H. ;
Morcuende, Jose A. ;
Tang, Nelson Leung-Sang ;
Lam, Tsz-Ping ;
Ng, Bobby Kin-Wah ;
Cheng, Jack Chun-Yiu ;
Dobbs, Matthew B. ;
Gurnett, Christina A. .
HUMAN MOLECULAR GENETICS, 2014, 23 (19) :5271-5282
[6]   Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays [J].
Chen, Ao ;
Liao, Sha ;
Cheng, Mengnan ;
Ma, Kailong ;
Wu, Liang ;
Lai, Yiwei ;
Qiu, Xiaojie ;
Yang, Jin ;
Xu, Jiangshan ;
Hao, Shijie ;
Wang, Xin ;
Lu, Huifang ;
Chen, Xi ;
Liu, Xing ;
Huang, Xin ;
Li, Zhao ;
Hong, Yan ;
Jiang, Yujia ;
Peng, Jian ;
Liu, Shuai ;
Shen, Mengzhe ;
Liu, Chuanyu ;
Li, Quanshui ;
Yuan, Yue ;
Wei, Xiaoyu ;
Zheng, Huiwen ;
Feng, Weimin ;
Wang, Zhifeng ;
Liu, Yang ;
Wang, Zhaohui ;
Yang, Yunzhi ;
Xiang, Haitao ;
Han, Lei ;
Qin, Baoming ;
Guo, Pengcheng ;
Lai, Guangyao ;
Munoz-Canoves, Pura ;
Maxwell, Patrick H. ;
Thiery, Jean Paul ;
Wu, Qing-Feng ;
Zhao, Fuxiang ;
Chen, Bichao ;
Li, Mei ;
Dai, Xi ;
Wang, Shuai ;
Kuang, Haoyan ;
Hui, Junhou ;
Wang, Liqun ;
Fei, Ji-Feng ;
Wang, Ou .
CELL, 2022, 185 (10) :1777-+
[7]   Consensus clustering of single-cell RNA-seq data by enhancing network affinity [J].
Cui, Yaxuan ;
Zhang, Shaoqiang ;
Liang, Ying ;
Wang, Xiangyun ;
Ferraro, Thomas N. ;
Chen, Yong .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[8]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15
[9]   Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder [J].
Dong, Kangning ;
Zhang, Shihua .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]   Advances in spatial transcriptomic data analysis [J].
Dries, Ruben ;
Chen, Jiaji ;
Del Rossi, Natalie ;
Khan, Mohammed Muzamil ;
Sistig, Adriana ;
Yuan, Guo-Cheng .
GENOME RESEARCH, 2021, 31 (10) :1706-1718