sAMDGCN: sLSTM-Attention-Based Multi-Head Dynamic Graph Convolutional Network for Traffic Flow Forecasting

被引:0
|
作者
Zhang, Shiyuan [1 ]
Ju, Yanni [2 ,3 ]
Kong, Weishan [1 ]
Qu, Hong [1 ]
Huang, Liwei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Sichuan Police Coll, Dept Rd Traff Management, Luzhou 646000, Peoples R China
[3] Intelligent Policing Key Lab Sichuan Prov, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
traffic flow prediction; spatiotemporal dependency; sLSTM; attention; graph convolutional network;
D O I
10.3390/math13020185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Accurate traffic flow prediction plays a vital role in intelligent transportation systems, helping traffic management departments maintain stable traffic order, reduce traffic congestion, and improve road safety. Existing prediction methods focus on dynamic modeling of the spatiotemporal dependencies of traffic flow, capturing the periodicity and spatial heterogeneity in traffic data. However, they still suffer from a lack of focus on the important local information in long-term predictions, leading to overly smooth results that fail to effectively capture sudden changes in traffic patterns. To address these limitations, we propose the sLSTM-Attention-Based Multi-Head Dynamic Graph Convolutional Network (sAMDGCN) model. Specifically, we extend sLSTM and introduce temporal trend-aware multi-head attention to jointly capture the complex temporal dependencies. We propose a multi-head dynamic graph convolutional network to capture a wider range of dynamic spatial dependencies. To validate the effectiveness of sAMDGCN, we perform extensive experiments on four real-world traffic flow datasets. Experimental results show that our proposed sAMDGCN model outperforms the advanced baseline methods in long-term traffic flow prediction tasks, demonstrating its superior performance in capturing complex and dynamic traffic patterns.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Attention-based spatial–temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Dawen Xia
    Bingqi Shen
    Jian Geng
    Yang Hu
    Yantao Li
    Huaqing Li
    Neural Computing and Applications, 2023, 35 : 17217 - 17231
  • [22] TPDGCN: Transmissibility-periodicity with Dynamic Graph Convolutional Network for Traffic Flow Forecasting
    Zhang, Ping
    Jin, Hanyu
    Zhao, Wenzhong
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 507 - 515
  • [23] Spatiotemporal dynamic graph convolutional network for traffic speed forecasting
    Yin, Xiang
    Zhang, Wenyu
    Zhang, Shuai
    INFORMATION SCIENCES, 2023, 641
  • [24] Attention-Enhanced Graph Convolutional Networks for Aspect-Based Sentiment Classification with Multi-Head Attention
    Xu, Guangtao
    Liu, Peiyu
    Zhu, Zhenfang
    Liu, Jie
    Xu, Fuyong
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [25] EMGCN: Enhancement Graph and Multi-head Attention Graph Convolutional Networks for Aspect-based Sentiment Analysis
    Chen, Jinhang
    Yan, Rong
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1591 - 1596
  • [26] Multi dynamic temporal representation graph convolutional network for traffic flow prediction
    Zuojun Wu
    Xiaojun Liu
    Xiaoling Zhang
    Scientific Reports, 15 (1)
  • [27] Forecasting traffic flow with spatial–temporal convolutional graph attention networks
    Xiyue Zhang
    Yong Xu
    Yizhen Shao
    Neural Computing and Applications, 2022, 34 : 15457 - 15479
  • [28] Attention-based spatial-temporal adaptive dual-graph convolutional network for traffic flow forecasting
    Xia, Dawen
    Shen, Bingqi
    Geng, Jian
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (23) : 17217 - 17231
  • [29] Interactive dynamic diffusion graph convolutional network for traffic flow prediction
    Zhang, Shuai
    Yu, Wangzhi
    Zhang, Wenyu
    INFORMATION SCIENCES, 2024, 677
  • [30] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238