Spatial prediction of on-road air pollution using long-term mobile monitoring: Insights from Delhi

被引:0
作者
Singh, Vikram [1 ]
Agarwal, Amit [1 ]
机构
[1] Indian Inst Technol, Dept Civil Engn, Roorkee 247667, India
关键词
Air pollution; Mobile monitoring; Spatiotemporal variations; Linear models; Machine learning; LAND-USE REGRESSION; BLACK CARBON; PM2.5; CONCENTRATIONS; ULTRAFINE PARTICLES; MODELS; EXPOSURE; NO2; CHINA; ROBUSTNESS; QUALITY;
D O I
10.1016/j.uclim.2025.102347
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A rapid increase in the density of urban activities nudges for a dense air quality monitoring network. Mobile monitoring using low-cost air quality devices provides a valuable method for capturing spatiotemporal variations of pollutants in the absence of a dense air quality monitoring network. Few studies advocated using linear and nonlinear models, whereas others have utilized machine learning (ML) models for spatial prediction. However, the application in the existing studies is limited to a shorter period and smaller area. Additionally, an understanding of the selection of these models is absent. This study uses PM2.5 concentrations from 15 low-cost air quality devices deployed in buses in Delhi for over eight months to compare the performance of different model categories. PM2.5 data is aggregated at the midpoint of the 1110 road segments. Various predictor variables, which exhibit spatiotemporal variations, are used in the prediction models. Among the linear models, Backward Stepwise Regression achieved the highest R2 (0.61) for the training dataset, and among ML models, Extreme Gradient Boosting exhibits the highest R2 (0.98). Temperature, humidity, built-up area, building height, road length, and traffic signals are the main influencing predictor variables. ML models perform better among all model categories, whereas linear models have a smaller divergence between training and validation R2. Additionally, linear models have better prediction consistency than nonlinear and ML models. These results confirm the high performance of ML models and exhibit the potential for improving prediction accuracy by splitting the data into smaller time bins and including more road segments.
引用
收藏
页数:26
相关论文
共 80 条
[1]   A Mobile Air Pollution Monitoring Data Set [J].
Adams, Matthew D. ;
Corr, Denis .
DATA, 2018, 4 (01)
[2]   Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models [J].
Adams, Matthew D. ;
Kanaroglou, Pavlos S. .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 168 :133-141
[3]   The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study [J].
Agarwal, Amit ;
Kickhoefer, Benjamin .
TRANSPORTATION, 2018, 45 (03) :849-873
[4]   Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan [J].
Araki, Shin ;
Shima, Masayuki ;
Yamamoto, Kouhei .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 634 :1269-1277
[5]   A machine learning-based ensemble model for estimating diurnal variations of nitrogen oxide concentrations in Taiwan [J].
Asri, Aji Kusumaning ;
Lee, Hsiao-Yun ;
Chen, Yu-Ling ;
Wong, Pei-Yi ;
Hsu, Chin-Yu ;
Chen, Pau-Chung ;
Lung, Shih-Chun Candice ;
Chen, Yu-Cheng ;
Wu, Chih-Da .
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 916
[6]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[7]   Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems [J].
Brauer, M ;
Hoek, G ;
van Vliet, P ;
Meliefste, K ;
Fischer, P ;
Gehring, U ;
Heinrich, J ;
Cyrys, J ;
Bellander, T ;
Lewne, M ;
Brunekreef, B .
EPIDEMIOLOGY, 2003, 14 (02) :228-239
[8]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[9]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[10]  
Chandramouli C., 2011, Census of India: Rural urban distribution of population, provisional population total