Continuous in time bubble decomposition for the harmonic map heat flow

被引:0
|
作者
Jendrej, Jacek [1 ,2 ]
Lawrie, Andrew [3 ]
Schlag, Wilhelm [4 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, 99 Ave Jean Baptiste Clement, F-93430 Neuchatel, Villetaneuse, France
[2] Univ Sorbonne Paris Nord, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Neuchatel, Villetaneuse, France
[3] Univ Maryland, Dept Math, 4176 Campus Dr William E Kirwan Hall, College Pk, MD 20742 USA
[4] Yale Univ, Dept Math, 10 Hillhouse Ave, New Haven, CT 06511 USA
来源
FORUM OF MATHEMATICS PI | 2025年 / 13卷
关键词
BLOW-UP; CONVERGENCE; EXISTENCE; SURFACES; MAPPINGS; DYNAMICS;
D O I
10.1017/fmp.2024.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the harmonic map heat flow for maps $\mathbb {R}<^>{2} \to \mathbb {S}<^>2$ . It is known that solutions to the initial value problem exhibit bubbling along a well-chosen sequence of times. We prove that every sequence of times admits a subsequence along which bubbling occurs. This is deduced as a corollary of our main theorem, which shows that the solution approaches the family of multi-bubble configurations in continuous time.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] TEICHMULLER HARMONIC MAP FLOW INTO NONPOSITIVELY CURVED TARGETS
    Rupflin, Melanie
    Topping, Peter M.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 108 (01) : 135 - 184
  • [32] ON THE STABILITY OF TYPE II BLOWUP FOR THE 1-COROTATIONAL ENERGY-SUPERCRITICAL HARMONIC HEAT FLOW
    Ghoul, Tej-Eddine
    Ibrahim, Slim
    Van Tien Nguyen
    ANALYSIS & PDE, 2019, 12 (01): : 113 - 187
  • [33] Global Solutions to the Heat Flow for m-harmonic Maps and Regularity
    Boegelein, Verena
    Duzaar, Frank
    Scheven, Christoph
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (06) : 2157 - 2210
  • [34] ENTROPY, STABILITY AND HARMONIC MAP FLOW
    Boling, Jess
    Kelleher, Casey
    Streets, Jeffrey
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (08) : 5769 - 5808
  • [35] Short-time existence of the α-Dirac-harmonic map flow and applications
    Jost, Juergen
    Zhu, Jingyong
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 46 (03) : 442 - 469
  • [36] PLATEAU FLOW OR THE HEAT FLOW FOR HALF-HARMONIC MAPS
    Struwe, Michael
    ANALYSIS & PDE, 2024, 17 (04): : 1397 - 1438
  • [37] Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii
    Banas, L'ubomir
    Prohl, Andreas
    Schaetzle, Reiner
    NUMERISCHE MATHEMATIK, 2010, 115 (03) : 395 - 432
  • [38] Selfsimilar expanders of the harmonic map flow
    Germain, Pierre
    Rupflin, Melanie
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (05): : 743 - 773
  • [39] A global weak solution of the Dirac-harmonic map flow
    Jost, Jurgen
    Liu, Lei
    Zhu, Miaomiao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (07): : 1851 - 1882
  • [40] A Harmonic Map of Space-Time
    Deshmukh, Sharief
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (06) : 1837 - 1845