Continuous in time bubble decomposition for the harmonic map heat flow

被引:0
|
作者
Jendrej, Jacek [1 ,2 ]
Lawrie, Andrew [3 ]
Schlag, Wilhelm [4 ]
机构
[1] Univ Sorbonne Paris Nord, CNRS, 99 Ave Jean Baptiste Clement, F-93430 Neuchatel, Villetaneuse, France
[2] Univ Sorbonne Paris Nord, LAGA, 99 Ave Jean Baptiste Clement, F-93430 Neuchatel, Villetaneuse, France
[3] Univ Maryland, Dept Math, 4176 Campus Dr William E Kirwan Hall, College Pk, MD 20742 USA
[4] Yale Univ, Dept Math, 10 Hillhouse Ave, New Haven, CT 06511 USA
来源
FORUM OF MATHEMATICS PI | 2025年 / 13卷
关键词
BLOW-UP; CONVERGENCE; EXISTENCE; SURFACES; MAPPINGS; DYNAMICS;
D O I
10.1017/fmp.2024.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the harmonic map heat flow for maps $\mathbb {R}<^>{2} \to \mathbb {S}<^>2$ . It is known that solutions to the initial value problem exhibit bubbling along a well-chosen sequence of times. We prove that every sequence of times admits a subsequence along which bubbling occurs. This is deduced as a corollary of our main theorem, which shows that the solution approaches the family of multi-bubble configurations in continuous time.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Bubble decomposition for the harmonic map heat flow in the equivariant case
    Jendrej, Jacek
    Lawrie, Andrew
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (09)
  • [2] Normalized Harmonic Map Heat Flow
    Struwe, Michael
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (03) : 664 - 686
  • [3] UNIFORMITY OF HARMONIC MAP HEAT FLOW AT INFINITE TIME
    Lin, Longzhi
    ANALYSIS & PDE, 2013, 6 (08): : 1899 - 1921
  • [4] HARMONIC MAP FLOW FOR ALMOST-HOLOMORPHIC MAPS
    Song, Chong
    Waldron, Alex
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2024, 128 (03) : 1225 - 1268
  • [5] Global existence of the harmonic map heat flow into Lorentzian manifolds
    Han, Xiaoli
    Jost, Juergen
    Liu, Lei
    Zhao, Liang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 130 - 156
  • [6] Finite-time singularity of the stochastic harmonic map flow
    Hocquet, Antoine
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 1011 - 1041
  • [7] Global existence and blow-up for harmonic map heat flow
    Guan, Meijiao
    Gustafson, Stephen
    Tsai, Tai-Peng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 1 - 20
  • [8] Existence and stability of shrinkers for the harmonic map heat flow in higher dimensions
    Glogic, Irfan
    Kistner, Sarah
    Schoerkhuber, Birgit
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [9] -stability of self-similar solutions to harmonic map heat flow
    Zhang, Yongbing
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 45 (3-4) : 347 - 366
  • [10] The rectified n-harmonic map flow with applications to homotopy classes
    Hong, Min-Chun
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (04) : 1249 - 1283