Regularity results for mixed local and nonlocal double phase functionals

被引:0
|
作者
Byun, Sun-Sig [1 ]
Lee, Ho-Sik [2 ]
Song, Kyeong [3 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
[3] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Mixed local and nonlocal functionals; Double phase; Local boundedness; Holder continuity; Harnack inequality; HARNACK PRINCIPLE; DIRICHLET FORMS; EQUATIONS;
D O I
10.1016/j.jde.2024.10.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled after v bar right arrow integral(n)(R)integral(n)(R)|v(x)-v(y)|(p)/|x-y|(n+sp)dxdy+integral(Omega)a(x)|Dv|(q)dx, where 0<s<1<p <= q and a(center dot)>= 0. In particular, we prove Holder regularity and Harnack inequality under possibly sharp assumptions on s,p,q and a(center dot).
引用
收藏
页码:1528 / 1563
页数:36
相关论文
共 50 条
  • [21] Regularity for minimizers for functionals of double phase with variable exponents
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 710 - 728
  • [22] The solvability and regularity results for elliptic equations involving mixed local and nonlocal p-Laplacian
    Zhang, Jiaxiang
    Zheng, Shenzhou
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (02) : 1097 - 1122
  • [23] ON THE REGULARITY THEORY FOR MIXED LOCAL AND NONLOCAL QUASILINEAR ELLIPTIC EQUATIONS
    Garain, Prashanta
    Kinnunen, Juha
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5393 - 5423
  • [24] On some regularity properties of mixed local and nonlocal elliptic equations
    Su, Xifeng
    Valdinoci, Enrico
    Wei, Yuanhong
    Zhang, Jiwen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 576 - 613
  • [25] Mixed local and nonlocal elliptic operators: regularity and maximum principles
    Biagi, Stefano
    Dipierro, Serena
    Valdinoci, Enrico
    Vecchi, Eugenio
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) : 585 - 629
  • [26] EXISTENCE AND REGULARITY OF MINIMIZERS FOR NONLOCAL ENERGY FUNCTIONALS
    Foss, Mikil D.
    Radu, Petronela
    Wright, Cory
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (11-12) : 807 - 832
  • [27] Partial regularity of minimizers for double phase functionals with variable exponents
    Tachikawa, Atsushi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (02):
  • [28] Partial regularity of minimizers for double phase functionals with variable exponents
    Atsushi Tachikawa
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [29] Local Regularity Results for Minima of Anisotropic Functionals and Solutions of Anisotropic Equations
    Gao Hongya
    Qiao Jinjing
    Wang Yong
    Chu Yuming
    Journal of Inequalities and Applications, 2008
  • [30] Local regularity results for minima of anisotropic functionals and solutions of anisotropic equations
    Hongya, Gao
    Jinjing, Qiao
    Yong, Wang
    Yuming, Chu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)