Regularity results for mixed local and nonlocal double phase functionals

被引:0
|
作者
Byun, Sun-Sig [1 ]
Lee, Ho-Sik [2 ]
Song, Kyeong [3 ]
机构
[1] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Seoul 08826, South Korea
[2] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
[3] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Mixed local and nonlocal functionals; Double phase; Local boundedness; Holder continuity; Harnack inequality; HARNACK PRINCIPLE; DIRICHLET FORMS; EQUATIONS;
D O I
10.1016/j.jde.2024.10.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the De Giorgi-Nash-Moser theory for minimizers of mixed local and nonlocal functionals modeled after v bar right arrow integral(n)(R)integral(n)(R)|v(x)-v(y)|(p)/|x-y|(n+sp)dxdy+integral(Omega)a(x)|Dv|(q)dx, where 0<s<1<p <= q and a(center dot)>= 0. In particular, we prove Holder regularity and Harnack inequality under possibly sharp assumptions on s,p,q and a(center dot).
引用
收藏
页码:1528 / 1563
页数:36
相关论文
共 50 条
  • [1] REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS
    Byun, Sun-Sig
    Oh, Jehan
    ANALYSIS & PDE, 2020, 13 (05): : 1269 - 1300
  • [2] Regularity of weak solutions for mixed local and nonlocal double phase parabolic equations
    Shang, Bin
    Zhang, Chao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 378 : 792 - 822
  • [3] Regularity results for solutions of mixed local and nonlocal elliptic equations
    Xifeng Su
    Enrico Valdinoci
    Yuanhong Wei
    Jiwen Zhang
    Mathematische Zeitschrift, 2022, 302 : 1855 - 1878
  • [4] Regularity results for solutions of mixed local and nonlocal elliptic equations
    Su, Xifeng
    Valdinoci, Enrico
    Wei, Yuanhong
    Zhang, Jiwen
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (03) : 1855 - 1878
  • [5] Local regularity for nonlocal double phase equations in the Heisenberg group
    Fang, Yuzhou
    Zhang, Chao
    Zhang, Junli
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [6] HOLDER REGULARITY RESULTS FOR PARABOLIC NONLOCAL DOUBLE PHASE PROBLEMS
    Giacomoni, Jacques
    Kumar, Deepak
    Sreenadh, K.
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2024, 29 (11-12) : 899 - 950
  • [7] Existence and regularity results for a Neumann problem with mixed local and nonlocal diffusion
    Cowan, Craig
    El Smaily, Mohammad
    Feulefack, Pierre Aime
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 423 : 97 - 117
  • [8] Regularity for general functionals with double phase
    Paolo Baroni
    Maria Colombo
    Giuseppe Mingione
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [9] Regularity for general functionals with double phase
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [10] REGULARITY RESULTS FOR A CLASS OF NONLOCAL DOUBLE PHASE EQUATIONS WITH VMO COEFFICIENTS
    Byun, Sun-Sig
    Kim, Kyeongbae
    Kumar, Deepak
    PUBLICACIONS MATEMATIQUES, 2024, 68 (02) : 507 - 544