A Nonlinear Hybrid Algorithm for Retrieving Land Surface Temperatures From Chinese Atmospheric Environment Monitoring Satellite Thermal Infrared Data

被引:0
作者
Li, Yichao [1 ,2 ,3 ]
Zhao, Hang [4 ]
Li, Kun [1 ]
Zeng, Jian [4 ]
Lan, Qiongqiong [4 ]
Han, Qijin [4 ]
Wu, You [5 ]
Qian, Yonggang [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[4] China Ctr Resources Satellite Data & Applicat, Beijing 100094, Peoples R China
[5] Surveying & Mapping Stn Xian, Xian 710000, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Land surface temperature; Atmospheric modeling; Satellites; Land surface; MODIS; Monitoring; Temperature sensors; Accuracy; Temperature measurement; Spatial resolution; DQ-1; satellite; land surface temperature (LST); nonlinear hybrid algorithm; split-window algorithm; temperature and emissivity separation (TES) algorithm; validation; SPLIT-WINDOW ALGORITHM; EMISSIVITY SEPARATION ALGORITHM; GROUND MEASUREMENTS; ASTER TEMPERATURE; VALIDATION; PRODUCTS;
D O I
10.1109/JSTARS.2025.3528517
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Land surface temperature (LST) is a crucial parameter for representing the earth's surface energy balance. Thermal infrared remote sensing is the primary method for rapidly retrieving LST over large areas. The Chinese Atmospheric Environment Monitoring Satellite (DQ-1) is equipped with the wide swath imager (WSI), which includes three thermal infrared bands capable of providing global LST retrieval. This article introduces a nonlinear hybrid algorithm that combines the split-window (SW) algorithm and the temperature and emissivity separation (TES) algorithm, and the accuracies of the three algorithms, including hybrid, SW and TES algorithm are analyzed. The results demonstrated that the root mean square errors of LST for SW, TES, and hybrid algorithm are approximately 2.11, 1.78, and 1.64 K, with mean absolute errors (of 1.72, 1.40, and 1.21 K using in situ measurements from the SURFRAD sites. Cross-validation with moderate-resolution imaging spectroradiometer (MODIS) LST products showed that the hybrid algorithm outperforms the SW and TES algorithms in retrieving LST, achieving reductions in LST error of 0.43 and 0.16 K at the Qinghai Lake site, and 0.67 and 0.06 K at the Dunhuang site, respectively. In summary, this study demonstrates that the nonlinear hybrid algorithm can accurately estimate LST from DQ1/WSI data.
引用
收藏
页码:4050 / 4059
页数:10
相关论文
共 43 条
[1]   A Split-window Algorithm for Estimating LST From Meteosat 9 Data: Test and Comparison With In Situ Data and MODIS LSTs [J].
Atitar, Mariam ;
Antonio Sobrino, Jose .
IEEE Geoscience and Remote Sensing Letters, 2009, 6 (01) :122-126
[2]   The ASTER spectral library version 2.0 [J].
Baldridge, A. M. ;
Hook, S. J. ;
Grove, C. I. ;
Rivera, G. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) :711-715
[3]   TOWARDS A LOCAL SPLIT WINDOW METHOD OVER LAND SURFACES [J].
BECKER, F ;
LI, ZL .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1990, 11 (03) :369-393
[4]   The ERA5 global reanalysis: Preliminary extension to 1950 [J].
Bell, Bill ;
Hersbach, Hans ;
Simmons, Adrian ;
Berrisford, Paul ;
Dahlgren, Per ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Radu, Raluca ;
Schepers, Dinand ;
Soci, Cornel ;
Villaume, Sebastien ;
Bidlot, Jean-Raymond ;
Haimberger, Leo ;
Woollen, Jack ;
Buontempo, Carlo ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (741) :4186-4227
[5]  
Berk A., 2013, Modtran (R) 5.3. 2 User's Manual
[6]   Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation [J].
Cheng, Jie ;
Liang, Shunlin ;
Yao, Yunjun ;
Zhang, Xiaotong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) :401-405
[7]   A Stepwise Refining Algorithm of Temperature and Emissivity Separation for Hyperspectral Thermal Infrared Data [J].
Cheng, Jie ;
Liang, Shunlin ;
Wang, Jindi ;
Li, Xiaowen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03) :1588-1597
[8]   Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data [J].
Coll, C ;
Caselles, V ;
Galve, JM ;
Valor, E ;
Niclòs, R ;
Sánchez, JM ;
Rivas, R .
REMOTE SENSING OF ENVIRONMENT, 2005, 97 (03) :288-300
[9]   Test of the MODIS Land Surface Temperature and Emissivity Separation Algorithm With Ground Measurements Over a Rice Paddy [J].
Coll, Cesar ;
Garcia-Santos, Vicente ;
Niclos, Raquel ;
Caselles, Vicente .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (05) :3061-3069
[10]   A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data [J].
Du, Chen ;
Ren, Huazhong ;
Qin, Qiming ;
Meng, Jinjie ;
Zhao, Shaohua .
REMOTE SENSING, 2015, 7 (01) :647-665