NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components

被引:0
作者
Li, Hongyi [1 ,3 ]
Yang, Ting [1 ]
Nerger, Lars [4 ]
Zhang, Dawei [2 ]
Zhang, Di [2 ]
Tang, Guigang [2 ]
Wang, Haibo [1 ]
Sun, Yele [1 ,3 ]
Fu, Pingqing [5 ]
Su, Hang [1 ]
Wang, Zifa [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, Layer Phys & Atmospher Chem LAPC, State Key Lab Atmospher Boundary, Beijing 100029, Peoples R China
[2] China Natl Environm Monitoring Ctr, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
[4] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany
[5] Tianjin Univ, Inst Surface Earth Syst Sci, Sch Earth Syst Sci, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
ENSEMBLE DATA ASSIMILATION; AEROSOL OPTICAL DEPTH; PARTICULATE MATTER PM2.5; KALMAN FILTER; EAST-ASIA; SEASONAL-VARIATIONS; BLACK CARBON; AIR; IMPACT; MODEL;
D O I
10.5194/gmd-17-8495-2024
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Identifying PM2.5 chemical components is crucial for formulating emission strategies, estimating radiative forcing, and assessing human health effects. However, accurately describing spatiotemporal variations in PM2.5 chemical components remains a challenge. In our earlier work, we developed an aerosol extinction coefficient data assimilation (DA) system (Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v1.0) that was suboptimal for chemical components. This paper introduces a novel hybrid nonlinear chemical DA system (NAQPMS-PDAF v2.0) to accurately interpret key chemical components (SO42-, NO3-, NH4+, OC, and EC). NAQPMS-PDAF v2.0 improves upon v1.0 by effectively handling and balancing stability and nonlinearity in chemical DA, which is achieved by incorporating the non-Gaussian distribution ensemble perturbation and hybrid localized Kalman-nonlinear ensemble transform filter with an adaptive forgetting factor for the first time. The dependence tests demonstrate that NAQPMS-PDAF v2.0 provides excellent DA results with a minimal ensemble size of 10, surpassing previous reports and v1.0. A 1-month DA experiment shows that the analysis field generated by NAQPMS-PDAF v2.0 is in good agreement with observations, especially in reducing the underestimation of NH4+ and NO3- and the overestimation of SO42-, OC, and EC. In particular, the Pearson correlation coefficient (CORR) values for NO3-, OC, and EC are above 0.96, and the R2 values are above 0.93. NAQPMS-PDAF v2.0 also demonstrates superior spatiotemporal interpretation, with most DA sites showing improvements of over 50 %-200 % in CORR and over 50 %-90 % in RMSE for the five chemical components. Compared to the poor performance in the global reanalysis dataset (CORR: 0.42-0.55, RMSE: 4.51-12.27 mu g m-3) and NAQPMS-PDAF v1.0 (CORR: 0.35-0.98, RMSE: 2.46-15.50 mu g m-3), NAQPMS-PDAF v2.0 has the highest CORR of 0.86-0.99 and the lowest RMSE of 0.14-3.18 mu g m-3. The uncertainties in ensemble DA are also examined, further highlighting the potential of NAQPMS-PDAF v2.0 for advancing aerosol chemical component studies.
引用
收藏
页码:8495 / 8519
页数:25
相关论文
共 115 条
[1]   Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study [J].
Aleksankina, Ksenia ;
Heal, Mathew R. ;
Dore, Anthony J. ;
Van Oijen, Marcel ;
Reis, Stefan .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (04) :1653-1664
[2]   Enhancement of OMI aerosol optical depth data assimilation using artificial neural network [J].
Ali, A. ;
Amin, S. E. ;
Ramadan, H. H. ;
Tolba, M. F. .
NEURAL COMPUTING & APPLICATIONS, 2013, 23 (7-8) :2267-2279
[3]   PM2.5 chemical composition and health risks by inhalation near a chemical complex [J].
Alves, Celia ;
Evtyugina, Margarita ;
Vicente, Estela ;
Vicente, Ana ;
Casotti Rienda, Ismael ;
Sanchez de la Campa, Ana ;
Tome, Mario ;
Duarte, Iola .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 124 :860-874
[4]  
Amante C., 2009, ETOPO1 1 ArcMinute Global Relief Model: Procedures, Data Sources and Analysis. Technical Memorandum NESDIS NGDC24. National Geophysical Data Center, Boulder, V1, P1, DOI DOI 10.7289/V5C8276M
[5]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[6]   Assessing the impact of Chinese FY-3/MERSI AOD data assimilation on air quality forecasts: Sand dust events in northeast China [J].
Bao, Yansong ;
Zhu, Liuhua ;
Guan, Qin ;
Guan, Yuanhong ;
Lu, Qifeng ;
Petropoulos, George P. ;
Che, Huizheng ;
Ali, Gohar ;
Dong, Yan ;
Tang, Zhaokang ;
Gu, Yingjie ;
Tang, Weiyao ;
Hou, Yue .
ATMOSPHERIC ENVIRONMENT, 2019, 205 :78-89
[7]   Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies [J].
Bell, Michelle L. ;
Dominici, Francesca ;
Ebisu, Keita ;
Zeger, Scott L. ;
Samet, Jonathan M. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2007, 115 (07) :989-995
[8]  
Bishop CH, 2001, MON WEATHER REV, V129, P420, DOI 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO
[9]  
2
[10]   Spatial and seasonal distributions of carbonaceous aerosols over China [J].
Cao, J. J. ;
Lee, S. C. ;
Chow, J. C. ;
Watson, J. G. ;
Ho, K. F. ;
Zhang, R. J. ;
Jin, Z. D. ;
Shen, Z. X. ;
Chen, G. C. ;
Kang, Y. M. ;
Zou, S. C. ;
Zhang, L. Z. ;
Qi, S. H. ;
Dai, M. H. ;
Cheng, Y. ;
Hu, K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D22)