Geostatistical semi-supervised learning for spatial prediction

被引:4
|
作者
Fouedjio, Francky [1 ]
Talebi, Hassan [2 ]
机构
[1] Rio Tinto, Data & Analyt, 152-158 St Georges Terrace, Perth, WA 6000, Australia
[2] Rio Tinto, Dev & Technol, 152-158 St Georges Terrace, Perth, WA 6000, Australia
来源
ARTIFICIAL INTELLIGENCE IN GEOSCIENCES | 2022年 / 3卷
关键词
Labeled spatial data; Unlabeled spatial data; Spatial autocorrelation; Pseudo labeling; Spatial prediction; REMOTE-SENSING DATA; RANDOM FOREST; CLASSIFICATION; INTERPOLATION; ALGORITHMS; REGION;
D O I
10.1016/j.aiig.2022.12.002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Geoscientists are increasingly tasked with spatially predicting a target variable in the presence of auxiliary information using supervised machine learning algorithms. Typically, the target variable is observed at a few sampling locations due to the relatively time-consuming and costly process of obtaining measurements. In contrast, auxiliary variables are often exhaustively observed within the region under study through the increasing development of remote sensing platforms and sensor networks. Supervised machine learning methods do not fully leverage this large amount of auxiliary spatial data. Indeed, in these methods, the training dataset includes only labeled data locations (where both target and auxiliary variables were measured). At the same time, unlabeled data locations (where auxiliary variables were measured but not the target variable) are not considered during the model training phase. Consequently, only a limited amount of auxiliary spatial data is utilized during the model training stage. As an alternative to supervised learning, semi-supervised learning, which learns from labeled as well as unlabeled data, can be used to address this problem. However, conventional semi-supervised learning techniques do not account for the specificities of spatial data. This paper introduces a spatial semi-supervised learning framework where geostatistics and machine learning are combined to harness a large amount of unlabeled spatial data in combination with typically a smaller set of labeled spatial data. The main idea consists of leveraging the target variable's spatial autocorrelation to generate pseudo labels at unlabeled data points that are geographically close to labeled data points. This is achieved through geostatistical conditional simulation, where an ensemble of pseudo labels is generated to account for the uncertainty in the pseudo labeling process. The observed labels are augmented by this ensemble of pseudo labels to create an ensemble of pseudo training datasets. A supervised machine learning model is then trained on each pseudo training dataset, followed by an aggregation of trained models. The proposed geostatistical semi-supervised learning method is applied to synthetic and real-world spatial datasets. Its predictive performance is compared with some classical supervised and semi-supervised machine learning methods. It appears that it can effectively leverage a large amount of unlabeled spatial data to improve the target variable's spatial prediction.
引用
收藏
页码:162 / 178
页数:17
相关论文
共 50 条
  • [1] A survey on semi-supervised learning
    Van Engelen, Jesper E.
    Hoos, Holger H.
    MACHINE LEARNING, 2020, 109 (02) : 373 - 440
  • [2] A Discriminative Model for Semi-Supervised Learning
    Balcan, Maria-Florina
    Blum, Avrim
    JOURNAL OF THE ACM, 2010, 57 (03)
  • [3] Semi-supervised Learning with Transfer Learning
    Zhou, Huiwei
    Zhang, Yan
    Huang, Degen
    Li, Lishuang
    CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, 2013, 8208 : 109 - 119
  • [4] A survey on semi-supervised learning
    Jesper E. van Engelen
    Holger H. Hoos
    Machine Learning, 2020, 109 : 373 - 440
  • [5] Semi-supervised learning by disagreement
    Zhou, Zhi-Hua
    Li, Ming
    KNOWLEDGE AND INFORMATION SYSTEMS, 2010, 24 (03) : 415 - 439
  • [6] Human Semi-Supervised Learning
    Gibson, Bryan R.
    Rogers, Timothy T.
    Zhu, Xiaojin
    TOPICS IN COGNITIVE SCIENCE, 2013, 5 (01) : 132 - 172
  • [7] Label propagation based semi-supervised learning for software defect prediction
    Zhang, Zhi-Wu
    Jing, Xiao-Yuan
    Wang, Tie-Jian
    AUTOMATED SOFTWARE ENGINEERING, 2017, 24 (01) : 47 - 69
  • [8] FedECG: A federated semi-supervised learning framework for electrocardiogram abnormalities prediction
    Ying, Zuobin
    Zhang, Guoyang
    Pan, Zijie
    Chu, Chiawei
    Liu, Ximeng
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (06)
  • [9] Semi-supervised Deep Learning System for Epileptic Seizures Onset Prediction
    Abdelhameed, Ahmed M.
    Bayoumi, Magdy
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1186 - 1191
  • [10] Adaptive Active Learning for Semi-supervised Learning
    Li Y.-C.
    Xiao F.
    Chen Z.
    Li B.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (12): : 3808 - 3822