Refining penalized ridge regression: a novel method for optimizing the regularization parameter in genomic prediction

被引:0
作者
Montesinos-Lopez, Abelardo [1 ]
Montesinos-Lopez, Osval A. [2 ]
Lecumberry, Federico [3 ]
Fariello, Maria, I [3 ]
Montesinos-Lopez, Jose C. [4 ]
Crossa, Jose [5 ,6 ,7 ,8 ,9 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn CUCEI, Guadalajara 44430, Jalisco, Mexico
[2] Univ Colima, Fac Telematica, Colima 28040, Colima, Mexico
[3] Univ Republica, Fac Ingn, Montevideo 11300, Uruguay
[4] Univ Calif Davis, Dept Publ Hlth Sci, Davis, CA 95616 USA
[5] Louisiana State Univ, AgCenter, Baton Rouge, LA 70803 USA
[6] King Saud Univ, Dept Stat & Operat Res, Riyah 11451, Saudi Arabia
[7] King Saud Univ, Distinguish Scientist Fellowship Program, Riyah 11451, Saudi Arabia
[8] Colegio Postgrad, Montecillos 56230, Edo de Mexico, Mexico
[9] Int Maize & Wheat Improvement Ctr CIMMYT, Km 45,Carretera Mexico Veracruz, Texcoco 52640, Edo de Mexico, Mexico
来源
G3-GENES GENOMES GENETICS | 2024年 / 14卷 / 12期
基金
比尔及梅琳达.盖茨基金会;
关键词
ridge regression; genomic prediction; GenPred; Shared Data Resource; plant breeding; breeding values; penalized regression; PATHS;
D O I
10.1093/g3journal/jkae246
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The popularity of genomic selection as an efficient and cost-effective approach to estimate breeding values continues to increase, due in part to the significant saving in genotyping. Ridge regression is one ofthe most popular methods used for genomic prediction; however, its efficiency (in terms of prediction performance) depends on the appropriate tunning of the penalization parameter. In this paper we propose a novel, more efficient method to select the optimal penalization parameter for Ridge regression. We compared the proposed method with the conventional method to select the penalization parameter in 14 real data sets and we found that in 13 of these, the proposed method outperformed the conventional method and across data sets the gains in prediction accuracy in terms of Pearson's correlation was of 56.15%, with not-gains observed in terms of normalized mean square error. Finally, our results show evidence of the potential of the proposed method, and we encourage its adoption to improve the selection of candidate lines in the context of plant breeding.
引用
收藏
页数:15
相关论文
共 18 条
[1]   A Penalized Regression Method for Genomic Prediction Reduces Mismatch between Training and Testing Sets [J].
Montesinos-Lopez, Osval A. ;
Pulido-Carrillo, Cristian Daniel ;
Montesinos-Lopez, Abelardo ;
Trejo, Jesus Antonio Larios ;
Montesinos-Lopez, Jose Cricelio ;
Agbona, Afolabi ;
Crossa, Jose .
GENES, 2024, 15 (08)
[2]   Optimized Parameter Search for Large Datasets of the Regularization Parameter and Feature Selection for Ridge Regression [J].
Pieter Buteneers ;
Ken Caluwaerts ;
Joni Dambre ;
David Verstraeten ;
Benjamin Schrauwen .
Neural Processing Letters, 2013, 38 :403-416
[3]   Optimized Parameter Search for Large Datasets of the Regularization Parameter and Feature Selection for Ridge Regression [J].
Buteneers, Pieter ;
Caluwaerts, Ken ;
Dambre, Joni ;
Verstraeten, David ;
Schrauwen, Benjamin .
NEURAL PROCESSING LETTERS, 2013, 38 (03) :403-416
[4]   Weighted Kernel Ridge Regression to Improve Genomic Prediction [J].
Diao, Chenguang ;
Zhuo, Yue ;
Mao, Ruihan ;
Li, Weining ;
Du, Heng ;
Zhou, Lei ;
Liu, Jianfeng .
AGRICULTURE-BASEL, 2025, 15 (05)
[5]   A Prediction Method Based on Improved Ridge Regression [J].
Luo, Huan ;
Liu, Yahui .
PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, :596-599
[6]   Bayesian estimation of the biasing parameter for ridge regression: A novel approach [J].
Rashid, Fareeha ;
Altaf, Saima ;
Aslam, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) :7215-7225
[7]   A new type of generalized information criterion for regularization parameter selection in penalized regression with application to treatment process data [J].
Ghatari, Amir Hossein ;
Aminghafari, Mina .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2024, 34 (04) :488-512
[8]   A Combined Nonlinear Programming Model and Kibria Method for Choosing Ridge Parameter Regression [J].
El Hefnawy, Ali ;
Farag, Aya .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (06) :1442-1470
[9]   Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine [J].
Brault, Charlotte ;
Doligez, Agnes ;
Cunff, Le ;
Coupel-Ledru, Aude ;
Simonneau, Thierry ;
Chiquet, Julien ;
This, Patrice ;
Flutre, Timothee .
G3-GENES GENOMES GENETICS, 2021, 11 (09)
[10]   A new robust ridge parameter estimator based on search method for linear regression model [J].
Goktas, Atila ;
Akkus, Ozge ;
Kuvat, Aykut .
JOURNAL OF APPLIED STATISTICS, 2021, 48 (13-15) :2457-2472