Comparing the performance of a femoral shaft fracture fixation using implants with biodegradable and non-biodegradable materials.

被引:2
作者
Taghipour, Sina [1 ]
Vakili-Tahami, Farid [1 ]
Chakherlou, Tajbakhsh Navid [1 ]
机构
[1] Univ Tabriz, Dept Mech Engn, 29 Bahman Blvd, Tabriz, Iran
来源
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS | 2025年 / 11卷 / 01期
关键词
biodegradable implant materials; femoral shaft fracture; stress shielding effect; Finite element analysis; von Mises stress; total bone displacement; CARDIOVASCULAR STENTS; MECHANICAL-PROPERTIES; CORROSION BEHAVIOR; IN-VIVO; MAGNESIUM; ALLOYS; BIOCOMPATIBILITY; IRON; DESIGN; ZINC;
D O I
10.1088/2057-1976/ad90e7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Orthopedic injuries, such as femur shaft fractures, often require surgical intervention to promote healing and functional recovery. Metal plate implants are widely used due to their mechanical strength and biocompatibility. Biodegradable metal plate implants, including those made from magnesium, zinc, and iron alloys, offer distinct advantages over non-biodegradable materials like stainless steel, titanium, and cobalt alloys. Biodegradable implants gradually replace native bone tissue, reducing the need for additional surgeries and improving patient recovery. However, non-biodegradable implants remain popular due to their stability, corrosion resistance, and biocompatibility. This study focuses on designing an implant plate for treating transverse femoral shaft fractures during the walking cycle. The primary objective is to conduct a comprehensive fi nite element analysis ( FEA ) of a fractured femur's stabilization using various biodegradable and non-biodegradable materials. The study assesses the efficacy of different implant materials, discusses implant design, and identifies the optimal materials for femoral stabilization. Results indicate that magnesium alloy is superior among biodegradable materials, while titanium alloy is preferred among non-biodegradable options. The fi ndings suggest that magnesium alloy is the recommended material for bone implants due to its advantages over non-degradable alternatives.
引用
收藏
页数:14
相关论文
共 72 条
[1]   Biodegradable synthetic polymer in orthopaedic application: A review [J].
Al-Shalawi F.D. ;
Azmah Hanim M.A. ;
Ariffin M.K.A. ;
Looi Seng Kim C. ;
Brabazon D. ;
Calin R. ;
Al-Osaimi M.O. .
Materials Today: Proceedings, 2023, 74 :540-546
[2]  
Baghaban-Eslaminejad M, 2017, NANO STR MED, P777
[3]   Sol-gel coatings incorporating borosilicate bioactive glass enhance anti corrosive and surface performance of stainless steel implants [J].
Balestriere, M. A. ;
Schuhladen, K. ;
Herrera Seitz, K. ;
Boccaccini, A. R. ;
Cere, S. M. ;
Ballarre, J. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 876
[4]   Hip contact forces and gait patterns from routine activities [J].
Bergmann, G ;
Deuretzbacher, G ;
Heller, M ;
Graichen, F ;
Rohlmann, A ;
Strauss, J ;
Duda, GN .
JOURNAL OF BIOMECHANICS, 2001, 34 (07) :859-871
[5]  
Bharadwaj A., 2021, IOP Conf. Ser.: Mater. Sci. Eng
[6]   Emerging magnesium-based biomaterials for orthopedic implantation [J].
Bordbar-Khiabani, Aidin ;
Yarmand, Benyamin ;
Mozafari, Masoud .
EMERGING MATERIALS RESEARCH, 2019, 8 (03) :305-319
[7]   Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys [J].
Bowen, Patrick K. ;
Shearier, Emily R. ;
Zhao, Shan ;
Guillory, Roger J., II ;
Zhao, Feng ;
Goldman, Jeremy ;
Drelich, Jaroslaw W. .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (10) :1121-1140
[8]   THE ESSENTIAL ROLE OF ZINC IN GROWTH [J].
BRANDAONETO, J ;
STEFAN, V ;
MENDONCA, BB ;
BLOISE, W ;
CASTRO, AVB .
NUTRITION RESEARCH, 1995, 15 (03) :335-358
[9]   Finite element method-based simulation on bone fracture fixation configuration factors for biodegradable embossed locking compression plate [J].
Chandra, Girish ;
Pandey, Ajay ;
Singh, Ashish Kumar ;
Singh, Gourav ;
Tipan, Nilesh .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024, 27 (08) :951-963
[10]   Biodegradable bone implants in orthopedic applications: a review [J].
Chandra, Girish ;
Pandey, Ajay .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (02) :596-610